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Abstract

We propose a geometric proof of the fundamental Lelong-Poincaré
formula : ddc log |f | = [f = 0] where f is any nonzero holomorphic
function defined on a complex analytic manifold V and [f = 0] is the
integration current on the divisor of the zeroes of f .

Our approach is based, via the local parametrization theorem, on
a precise study of the local geometry of the hypersurface given by f .
Our proof extends naturally to the meromorphic case.
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Since the Lelong-Poincaré formula plays a crucial role in complex ana-
lytic geometry, notably in intersection theory (see [4]), it is a natural aim
to look for a geometric proof of this fundamental formula. More precisely,
we offer a geometric proof of the following

Theorem Let V be a connected complex analytic manifold of dimension
n and let f : V → C be a holomorphic nonzero function. Then, the
meromorphic differential form d0f/f defines a current of type (1,0) on V ,
and furthermore, we have

(LP ) d00
∙
1

2iπ

d0f

f

¸
= [f = 0]

where [f = 0] is the integration current on the divisor of the zeroes of f .

We denote by D(V ) the set of compactly supported differential forms
of class C∞ in V .

Recall that if T is a current of degree s on V , then dT is the current
of degree s+ 1 acting by the rule :

dT (ϕ) =
D
dT,ϕ

E
:= (−1)s+1

D
T, dϕ

E
= (−1)s+1 T (dϕ), ϕ ∈ D(V ),

with d = d0 + d00 where d0 and d00 are holomorphic and antiholomorphic
differentiation operator, respectively. So, for any (n− 1, n− 1) - form ϕ in
D(V ), we have

d

∙
1

2iπ

df

f

¸
(ϕ) = d

∙
1

2iπ

d0f

f

¸
(ϕ) =

∙
1

2iπ

d0f

f

¸
(dϕ)

=

∙
1

2iπ

d0f

f

¸
(d00ϕ) = d00

∙
1

2iπ

d0f

f

¸
(ϕ).

Recall also that the integration current exists on any analytic set (see
[6]), and if ω is a locally integrable (p, q) - form on V , it defines a current
[ω] of type (p, q) on V by the formula :

[ω] (ϕ) :=
D
[ω], ϕ

E
=

Z
V
ω ∧ ϕ,
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where ϕ is any (n− p, n− q) - form in D(V ).

Now, here is the outline of our proof.

By an argument of partition of unity, we easily see that our problem
is local on V , and then we may assume that V is a domain (open and
connected set) of Cn containing 0, such that f(0) = 0 and f is nonzero
on V .

The proof of the theorem can be divided into five steps :

— Existence of the current [d0f/f ] when V = C and f = P ∈ C[z].

— Proof of (LP ) when V = C and f = P ∈ C[z].

— Existence of the current [d0f/f ] in the general case.

— Proof of (LP ) for a special class of test forms.

— Proof of (LP ) in the general case.

The two firs steps are quite elementary applications from analysis in
one complex variable. We focus now on the three last steps.

§1. Existence of the current [d0f/f ] in the general case.

As f is nonzero on V , we can choose a local coordinates system
(z1, . . . , zn) such that, for any j ∈ {1, . . . , n}, the partial function ξ 7→
f(0, . . . , ξ, . . . , 0), obtained by varying zj , is nonzero in a neighborhood of
the origin.

Then we have

d0f(z1, . . . , zn)

f(z1, . . . , zn)
=

nX
j=1

1

f(z1, . . . , zn)

∂f(z1, . . . , zn)

∂zj
dzj ,

and we are going to see that the coefficient of dzn is locally integrable
on V . The proof is obviously analogous for the coefficients of dzj when
1 ≤ j ≤ n− 1.
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By the Weierstrass preparation theorem, and up to a restriction of the
open set V , we may assume that V = Ω × D(0, ε), ε > 0, where Ω is
a domain in Cn−1 containing 0, and where f can be written, by setting
t = (z1, . . . , zn−1) and z = zn :

(1) f(t, z) = I(t, z) Pt(z), (t, z) ∈ Ω×D(0, ε),

where I is an analytic function in V with values in C∗, and Pt is a
monic polynomial of degree k (k being the multiplicity of the function
ξ 7→ f(0, . . . , 0, ξ) at 0) which depends analytically on t and whose roots
zj(t) are in D(0, ε) for any t ∈ Ω.

Now consider a compact set K = K1 ×K2 with K1 and K2 are com-
pact sets in Ω and D(0, ε) respectively.

Since

1

f(t, z)

∂f(t, z)

∂z
=

1

I(t, z)

∂I(t, z)

∂z
+

1

Pt(z)

∂Pt(z)

∂z

and as the meromorphic form d0I/I has no singularity in the open set
Ω×D(0, ε), it is enough to prove that, for each j ∈ {1, . . . , p}, the integralZ

K

1

|z − zj(t)|

µ
i

2

¶n
dz1 ∧ dz1 ∧ . . . ∧ dzn−1 ∧ dzn−1 ∧ dz ∧ dz

is finite because
1

Pt(z)

∂Pt(z)

∂z
=

kX
j=1

1

z − zj(t)
.

For this purpose, take a number r ∈ ]ε/3, 2ε/3[, a point a ∈ D(0, r),

and let us prove that the integral J(a) :=

Z
D(0, ε)

1

|z − a|

µ
i

2

¶
dz ∧ dz is

uniformly bounded with respect to a. Indeed,

J(a) =

Z
D(0, ε)\D(a, r/2)

1

|z − a|

µ
i

2

¶
dz ∧ dz +

Z
D(a, r/2)

1

|z − a|

µ
i

2

¶
dz ∧ dz
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≤ 2
r

R
D(0, ε)

µ
i
2

¶
dz ∧ dz +

R
D(0, r/2)

1
|z|

µ
i
2

¶
dz ∧ dz

≤ 8πε.
So, by restricting the compact set K if necessary, we can assume that

for any t ∈ K1, the roots zj(t) (1 ≤ j ≤ k) belong to D(0, r). By Fubini’s
theorem, we haveZ
K

1

|z − zj(t)|

µ
i

2

¶n
dz1∧dz1∧. . .∧dzn−1∧dzn−1∧dz∧dz ≤ 8πεmes (K1).

This completes the proof of the existence of the current [d0f/f ] when
f is any holomorphic nonzero function on V .

§4. Proof of (LP ) for “convenient ”differential forms.

In this section, we prove the formula (LP ) for differential forms which
are locally given by ϕ = ρ(t, z) dt ∧ dt where ρ is a smooth function with
compact support in V, and dt ∧ dt = dz1 ∧ . . . dzn−1 ∧ dz1 ∧ . . . ∧ dzn−1.
We will say that a such ϕ is “convenient ”with respect to the projection
Ω×D(0, ε)→ Ω, (t, z) 7→ t.

First, we consider the case where the function f is such that, for j 6= j0,
the roots zj and zj

0
are different at the generic point t of Ω.

By (1), and since the differential form d0I/I is holomorphic on the open
set Ω×D(0, ε), we have

d00
∙
d0f

f

¸
= d00

∙
d0Pt
Pt

¸
,

whence

d00
∙
d0f

f

¸
(ϕ) =

Z
Ω×D(0, ε)

d0Pt
Pt
∧ d00ϕ

=
R
Ω×D(0, ε)

ÃPn−1
j=1

1
Pt(z)

∂Pt(z)
∂zj

dzj +
P 0t(z)
Pt(z)

dz

!
∧ ∂ρ(t,z)

∂z dz ∧ dt ∧ dt

=
R
Ω×D(0, ε)

P 0t(z)
Pt(z)

dz ∧ ∂ρ(t,z)
∂z dz ∧ dt ∧ dt
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=
R
Ω dt ∧ dt

R
D(0, ε)

P 0t(z)
Pt(z)

dz ∧ ∂ρ(t,z)
∂z dz.

By the case n = 1 and Fubini’s theorem, we getZ
D(0, ε)

1

2iπ

P 0t(z)

Pt(z)
dz ∧ ∂ρ(t, z)

∂z
dz = [Pt = 0] (ρ(t, ·)),

and hence

d00
∙
1

2iπ

d0Pt
Pt

¸
(ϕ) =

Z
Ω

Ã pX
j=1

ρ(t, zj(t))

!
dt ∧ dt.

Now consider

R :=

½
t ∈ Ω ,

Y
1≤j<j0≤n

³
zj(t)− zj

0
(t)
´2
= 0

¾
.

By the hypothesis on the roots zj , we know (see [5]) that R is a closed
analytic set with empty interior, hence of Lebesgue measure equal to zero
in Ω.

Put {f = 0} = {(t, z) ∈ Ω × D(0, ε) , Pt(z) = 0}. The local
parametrization theorem for analytic sets exhibits the hypersurface {f =
0} as a branched covering of degree k of Ω via the natural projection

π0 : {f = 0} → Ω , (t, z) 7→ t,

and the branching locus is R. Then we have

Z
Ω

Ã
kX

j=1

ρ(t, zj(t))

!
dt ∧ dt =

Z
Ω\R

Ã
kX

j=1

ρ(t, zj(t))

!
dt ∧ dt

=
R
{f=0}\π−10 (R) ϕ.

Let S be the singular locus of {f = 0} and put Sε =
n
x ∈ {f =

0
o
, d(x, S) ≤ ε} with ε > 0.

The Lelong theorem (see [6]) givesZ
{f=0}

ϕ = lim
ε→0

Z
{f=0}\Sε

ϕ.
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Since π−10 (R) is a closed analytic space, it is of measure 0 in {f = 0},
then π−10 (R) ∩ ({f = 0} \ Sε) is of measure 0 in the analytic complex
manifold {f = 0} \ Sε.

Let χε be the characteristic function of {f = 0} \ Sε in the complex
analytic manifold {f = 0} \ π−10 (R). We haveZ

{f=0}\π−10 (R)
χε ϕ =

Z
{f=0}\Sε

ϕ,

which implies

lim
ε→0

Z
{f=0}\π−10 (R)

χε ϕ =

Z
{f=0}

ϕ.

Moreover
kX

j=1

|χε ρ(t, zj(t))| ≤
kX

j=1

|ρ(t, zj(t))|

where the term on the right is independant on ε and integrable since

ρ(t, zj(t)) dt ∧ dt = (π0)∗ ϕ

and since the differential form ϕ has continuous coefficients on V (see [4])
and has a compact support.

As (χε ϕ)ε converges almost everywhere to ϕ when ε tends to 0, the
Lebesgue’s dominated convergence theorem gives

lim
ε→0

Z
{f=0}\π−10 (R)

χε ϕ =

Z
{f=0}\π−10 (R)

ϕ.

Then we haveZ
{f=0}

ϕ =

Z
{f=0}\π−10 (R)

ϕ = d00
∙
1

2iπ

d0f

f

¸
(ϕ),
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which establishes the formula (LP ) when the branching locus does not
coincide with Ω.

Now we are ready to prove (LP ) for any holomorphic function on V .

We keep the notations of §1. We know that the vanishing locus of f in
Ω × D(0, ε) consists in that of the function (t, z) 7→ P (t, z) which is the
branching covering of degree k over the open set Ω. This covering can be
seen as an analytic application P : Ω → Ck where Ck is identified here
to the set of monic polynomials of degree k with complex coefficients.

We call the ring of functions of P , and we denote by O(P ), the quotient
of the ring O(Ω × D(0, ε)) of holomorphic functions on Ω × D(0, ε), by
the principal ideal generated by eP : Ω×D(0, ε)→ C, (t, z) 7→ eP (t, z) :=
Pt(z).

The branched covering P is said to be reduced if the ring O(P ) is re-
duced, that is, every nilpotent element in O(P ) is zero. P is said to be
irreducible if O(P ) is integral.

Since P is reduced if and only if its branching locus R does not coincide
with Ω (see [3]), we deduce that the formula (LP ) has been proved when
P is reduced. To get this result with any f , it is enough now to use the
decomposition theorem (see [3]) which asserts that the branching covering
P induced by f can be decomposed in a unique way in the form P =Q

j P
nj
j where Pj are reduced (and irreducible) branching coverings, and

nj are positive integers.

Indeed, if f is any holomorphic function on the open set V = Ω×D(0, ε),
then the decomposition theorem allows to write f =

Q
j f

nj
j where the fj

are reduced and irreducible. From the result proved in §4 we deduce

d00
∙
1

2iπ

d0f

f

¸
=
X
j

nj d
00
∙
1

2iπ

d0fj
fj

¸
=
X
j

nj [fj = 0] = [f = 0].

The proof of (LP ) is then complete for any (n − 1, n − 1)- form in
D(V ) locally given by ϕ(t, z)) = ρ(t, z) dt ∧ dt.
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It remains to show that the result above is still true for any compactly
supported (n − 1, n − 1) - form of class C∞ on V . It is the aim of the
following section.

§3. Proof of (LP ) in the general case.

We want to prove the equality

d00
∙
1

2iπ

d0f

f

¸
(ϕ) =

Z
{f=0}

ϕ(0.1)

for any (n− 1, n− 1) - form ϕ in D(V ).

By the local parametrization theorem, we may assume that

• V = Ω×C where Ω is a domainCn−1,

• {f = 0} is a branching covering of degree k over Ω via the projection
π0 : V → Ω.

• there exists a compact set K in Ω such that the support of ϕ is
contained in K ×C.

Then, there exists a neighborhood U of 0 in L
³
Cn,Cn−1

´
such that

for every u ∈ U , the projection πu := π0 + u exhibits Ω as a branching
covering of a same neighborhood Ω0 of K in Ω (more precisely, such that
π−1u (Ω0) ∩ {f = 0} → Ω0 is a branching covering of degree k).

The following lemma shows that it is sufficient to consider “sympathic ”
forms with respect to the given projection.

Lemma Let π0 : C
n+p → Cn be the canonical projection. For u ∈

L
³
Cn+p,Cn

´
, set πu = π0+u. For any couple of integers (a, b) such that

a ≤ n et b ≤ n, and for any neighborhood U of 0 in L
³
Cn+p,Cn

´
, we

have

Λa,b
³
Cn+p

´∗
=

X
u∈U

π∗u
³
Λa,b

³
Cn)∗

´

where Λa,b (E)∗ , for a complex vector space E, denotes the space of a-linear
and b-antilinear alternating forms on E.
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By duality and analytic extension with respect to u, this lemma is an
immediate consequence of the following result.

Proposition Let n ∈N∗ and p ∈ N. Let a and b be integers such that
a ≤ n and b ≤ n, and let v ∈ Λa,b

³
Cn+p

´∗
. If for any u ∈ L(Cn+p,Cn)

we have u∗(v) = 0, then v = 0.

Proof Following [2], we establish this result by induction on p.

For p = 0, the result is obvious. Then we may assume p ≥ 1.

Setting Cn+p = H ⊕ C e, we have

Λa,b (Cn+p) = Λa,b (H)⊕Λa−1,b (H)∧e⊕Λa,b−1 (H)∧e⊕Λa−1,b−1 (H)∧e∧e.

Let v = v0,0 ⊕ v1,0 ∧ e ⊕ v0,1 ∧ e ⊕ v1,1 ∧ e ∧ e.

— If v0,0 6= 0, then, by induction hypothesis, there exists f ∈ L(H,Cn)
such that f∗(v0,0) 6= 0. Putting u = f on H and u(e) = 0, we define an
element of L(Cn+p,Cn) which satisfies u∗(v) = u∗(v0,0) = f∗(v0,0) 6= 0.
This establishes the result in this case.

— If v1,1 6= 0, then, by induction hypothesis (because a − 1 ≤ n − 1
and b − 1 ≤ n − 1), there exists g ∈ L(H,Cn−1) such that g∗(v1,1) 6= 0.
Put Cn = Cn−1⊕C ε, and define u in L(Cn+p,Cn) by u = g⊕ 0 on H
and u(e) = ε. Then the component on Λa−1,b−1 (Cn−1)∧ ε∧ ε of u∗(v) is
g∗(v1, 1) ∧ ε ∧ ε 6= 0, wich completes this case.

— Assume now that v0,0 = v1,1 = 0 and v1, 0 6= 0 (for instance). Let
w be a totally decomposed vector in Λa−1,b (H)∗ such that hv1,0 , wi = 1,
and put

w = w1 ∧ . . . ∧ wa−1 ∧ t1 ∧ . . . tb,

where the wi and the tj are in H∗. Since a − 1 ≤ n − 1 < n + p − 1 =
dimCH, there exists a nonzero element in

Tn−1
i=1 Kerwi.

Let h∗ be an element of H∗ such that hh∗, hi = 1. Then

hv1,0 ∧ h , w ∧ h∗i = hv1,0 , wi = 1.
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We deduce that v1,0 ∧ h is nonzero in Λa,b (H). By the induction hy-
pothesis there exists f ∈ L(H,Cn) such that f∗(v1,0 ∧ h) 6= 0.

Consider now the linear application g : Cn+p → H defined by g|H =
IdH and g(e) = h. Then, for u = f ◦g we get u∗(v1,0∧e) 6= 0. Moreover,
if h0 is close to h in H, and if h0 is close to f in L(H,Cn), this property
will remain true. We deduce

f 0(v1,0) ∧ f 0(h0) + f 0(v0,1) ∧ f 0(h0) = 0

for at least one f 0 which can be assumed to be of rank n and for any h0 close
to h. Since f 0 is of maximum rank, f 0(h0) will describe a neighborhood
of f 0(h) when h0 describes a neighborhood of h in H. Thus, we get the
desired contradiction. Indeed, if A and B are elements of Λa−1,b (Cn) and
Λa,b−1 (Cn) respectively, and if A ∧ v + B ∧ v = 0 for any v in an open
subset of Cn, then A = B = 0.

This completes the proof of the proposition.

Remark : In the previous lemma, it is clear that, for a given U , it is
sufficient to consider a finite number of u in U .

Example : For n = 2 and λ ∈ C, consider the mappings

πλ : C2 → C , (z1, z2) 7→ z1 + λ z2.

We have

π∗λ (dz1 ∧ dz1) = dz1 ∧ dz1 + λ dz1 ∧ dz2 + λ dz2 ∧ dz1 + λλ dz2 ∧ dz2,

and for λ such that λ 6= ±λ, the familyn
π∗λ (dz1 ∧ dz1), π∗−λ/2 (dz1 ∧ dz1), π∗λ (dz1 ∧ dz1), π

∗
λ/4
(dz1 ∧ dz1)

o

is free, and then generates Λ1,1 (C2)∗.
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By the lemma, and up to a finite number of projections closed to π0, it is
sufficient to consider the case ϕ(t, z) = ρ(t, z) dt∧t where t1, . . . , tn−1 and
z are coordinates on Cn−1 and C respectively, dt∧ dt = dt1 ∧ . . . dtn−1 ∧
dt1 ∧ . . . ∧ dtn−1, and ρ is a smooth function on Ω × C with compact
support in K ×C.

Remark Since log|f | is plurisubharmonic on V , it is locally integrable (see
[7]). Then it defines a (0,0) - current on V .

Introducing the real operator

dc =
d0 − d00

2iπ

we have ddc = i
π d0d00, and then we get

ddc log |f | = [f = 0]

which is nothing but the usual Lelong-Poincaré formula.
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[1] Barlet D. : Le théorème d’intégration sur un ensemble analytique com-
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