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Abstract

We give sufficient conditions for the convergence almost every-
where of the expansion with respect to an unconditional basis for
functions in LP p > 2. This result extends the classical theorem of
Menchoff and Rademacher for orthogonal series in L>.
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1. Introduction

In this paper we study the almost everywhere convergence of unconditional
series in a general o-finite LP space. The main result of this work is a
generalization to LP of the classical result of D. Menchoff and Rademacher
([1], [7],[9]) on the almost everywhere convergence of orthogonal series in
L?. Theorem 1.1 below is a generalization of that result. When p = 2
and the series are orthogonal this contains the generalization obtained by
Moricz and Tandori [10] (Theorem 1). The result of Menchoff has interest-
ing implications in several areas of Analysis: Fourier Series ([1] [14]), and
specially in Probability Theory ([2], [4], [7]) where this result is related to
the laws of large numbers. On the other hand, unconditional basis are very
important in Wavelet Analysis and related fields. One of the difficulties
found when trying to generalize this result to LP, p # 2, is the lack of the
notion of orthogonality. Fortunately, it is not orthogonality what is needed
but a consequence of it; uncondtional convergence. We will prove that this
property together with another similar to the original used by Moricz and
Tandori seem to be sufficient to ensure the almost everywhere convergence
of certain expansions in LP.

The main result can be stated formally:

Theorem 1.1. Let {f;};eN be a basic sequence in LP(X, F,p), p > 2.
If for some 0 < € < 2:

n

o . 942\ 72
> > ajlog(h)? (wg ) fiv In={2"+1,..,2"1) (A2 =3 o

3
n=0jel, ; i=1

o0
converges in the norm of LP(X, F, ) then: Y ayfx(x) converges for almost
k=1

all x € X [p)].

2. Some definitions and known results

Recall that a Schauder basis or a basic sequence (a basis for a closed sub-
space) is call unconditional if it verifies one (and hence all) of the equiva-
lences of the following proposition:



A convergence result for unconditional series in LP () 307

Proposition 2.1. A basic sequence {z,},cN In a Banach space B is un-
conditional if and only if one of the following conditions is fullfilled:
i) For every permutation 7 of the integers the sequence {Tr(n)}tneN IS a
basic sequence (is a basis of span{n},eN)-
o0
ii) For every subset of integers o the convergence of Y. anz, implies the
n=1

convergence of > anpTy.
neo

[e.e) o0

iii) The convergence of Y anx, implies the convergence of > byxy, when-
n=1 n=1

ever |by| < |ay|.

o o
iv) The convergence of Y. anx, implies the convergence of Y Onan,x,
n=1 n=1

where 0, = F1 arbitrarely.

As a consequence of this proposition using the properties of the Rademacher
functions, an alternative characterization can be given for unconditional
basic sequences in the particular case of o-finite LP spaces, [13]:

Theorem 2.1. Let {f;};eNn be a basic sequence in LP(X, F, ) (1 < p <
00). Then it is unconditional if and only if there exist Ap, B, positive
constants such that:

1

Ap 1S a1 < Zajfj < By || D] laj fil? ;
J

J

L (X) L (X) ’ Lr(X)

v Zajfj S LP(X,F,,LL).
J

This result gives a very useful characterization in terms of the equiva-
lence of norms for span{f;};. This equivalence will be very important in
the sequel, though we will use it several times without refering to it explic-
itly, as it will become clear from the context.

Our results rely on maximal inequalities, so we need to define several max-
imal operators:

Definition 1. Let f € LP(X,F,u), f = % ay fr , we define:
k=1

MPf(x) = sup [Son f(a)|
NeN
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n
where, given n € N, x € X then S, f(z) = Y axf.
k=1

Mf(z) = sup Sk f ()]

ke

and
n

> anfi(w)

k=2N-141

Mgvf(x) = sup

2N -1on<2N

3. Auxiliary Results

In the following we will also suppose that (X, F, ) is a o-finite measure
space. We will call absolute constants as K, C, ¢, C), etc. Logarithms
are taken in base 2. In our results {f;}; constitutes an unconditional basic
sequence, so sometimes we will no mention this fact as in the following;:

o0
Proposition 3.1. Let f € EP(X,F,u), f = > axfr , then
k=1

(3.1) HMdep <C,

Z aglog(k + 1) fx
k=1

p

Proof. first, let us bound the difference 3> | f — Son f|1}:
N=1

1P

p - - 3
<cp Y, ( > !ak:fk\2>
N=1|| \&

=2N 41
p P

o0

D= Sanfllp ="
N=1

N=1

o0

> arfr

k=2N+1

p

[N

= = log(k+1)
=cp ) (kzz |akmﬁc|2)

p
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IN
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On the other hand, given z € X:

|Sow f ()P < 207 (| f(2) [P + |Son f () — f(2)]P)
<2t (!f(fc)!” + > [Son f(z) - f(x)|p> ;
N=1
then
MO f ()P < 207 (!f )P+ Z |Son f(z) — f(@ )\”) :
N=1

Integrating at both sides of the inequality,

[ 1M (@) < 2 Q ()P + Z / Sy f o
X

)Ipdu) ,

then by 3.2
o0 P o el
<K (Z ’akfk|2> + K ( > larlog(k + 1)fk|2)
k=1 P k=2N+1

< K"

O

e}

(Z aglog(k + 1 fk\Q

)

Nl=

p
< KM

p

> arlog(k +1) fi

k=1

Proposition 3.2. Let f € LP(X,F,pu), f = § ay fr; then
k=1

(33) ML <C )|+ Z [atier]
- p
Proof. Letz € X;
oN-1 n
Suf(x) =Y aefu(@)+ Y apfu(2),
k=1 k=2N-141
and then
oN-1 n
1Suf (@) < | D arfr(@)|+| D arful@)|,
k=1 k=2N-141
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n

> arfu(x)

k=2N-141

S f(2)| < sup |Son f(2)] + , (n<2V)
N>1

n

> anfu(w)

k=2N-141

< Mf(x) + My f(2),

< sup [Son f(z)[+  sup
N>1 2N -1lon<2N

then
Suf @) < 27 (M ()7 + |M§Vf<x>|p)

<2p1<|Mdf ]7’+Z|M ),

This last bound is independent of n € N, then

[ 1Mp@)rd < 2 (X/ M@Pan Y | |M§Vf<sc>|pdu) ,
X N=1%

but from equation 3.1

Zaklog (k+1)f

+ Z / M, f \pdu) .

leX

[IMp@)ran < 2! (

X

O
In the following we will use a rather classical technique which consists
in decomposing the partial sums in dyadic blocks [1], [14]. From this fact

o
we can easily see that if we take f € LP(X, F,u), f = > axfx then
k=1

(3-4) IMn£ll, <2Qmaw |Si & ( )\pdu) :

where My f(z) = niax |Spf(z)| and

i2N7k

Si kf(x) = Z amfm(x)

m=(i—1)2N—k41

This follows immediately from the following fact: Take z € X then there
exists n*(x) such that mag [Snf ()] = [Sp+(2) f(x)| but if we decompose this



A convergence result for unconditional series in LP () 311

sum in dyadic blocks (of length 2¢, i = 0,1,2...) we have;

n*(z)

> arfi(x)

k=1

< a1 fi(z)|+|azf2(x)+as f3()|+|as fa(@)+....+a7 fr(x)[+(...)

<Z maz |Si kf(x)] -

=0 1<i<2k

From this last result we obtain:
o0
Proposition 3.3. Let p > 2, f € LP(X,F,pu) and f = Y ayfx then
k=1

p

(3.5) S [vivs|) < & Hfj arlog(k + 1) i
N=1 k=1

p

Proof. There exists a disjoint family of sets {A;}; C F such that

maz |S; . f(x
1<5<2k

)

ikf(x)la,

then

max |S; f(z \pd,u<2/]51kf )PLa,dp.

1<45< 2k 7
=ix

But, if the fi’s form an unconditional basic sequence then

[N]S]

2N~k
> J18iks@i exs / ( > |amfm<x>12) dy
(

i=1% i=1% \m=(i—1)2N-k41

2
2

2N k
36) < /(Z > |amfm(x)|2) dp  (p>2),

1=1m=(i—1)2N-k4+1

then from equation 3.4 we have

IMnfll, < KN+ D)7,
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2N —1
In particular, replacing f with Y. amfin(z) we get My f(z) = My f(z)
m=2N-141

and then
(3.7) HM?Vpr < K(N+1)

N_

1
Z am fm

m=2N-141

)

from this we get
1P

S <x o) 5 o]
N=1

N=1 m=2N-141
p

= K,/ Z (N + 1)p( Z_ ’amfm(x)P) dp

m=2N-141

00 2N 1 3
<x' [ Z( > ramuOg(m)H)fm(x)P) .

m=2N-141

Since p > 2, using a similar argument as in inequality 3.6, we have

2N _1

<K' /(Z ) |am<109<m>+1>fm<m>|2) dy

X N=1m=2N-141

oo 2N —1 B
<K (Y Janlogtn+ Dn(@)? | du.
x \N=1m=2N-14]

from which the result follows. O
With all these results we can completely bound the maximal function
M f and hence we can give a proof of the following:

Theorem 3.1. Let p > 2 and {fx}r be an unconditional basic sequence
such that

Z arlog(k + 1) f
k=1
converges in the norm of LP(X, F, 1) then:

[e.°]
I) Y apfr converges in LP-norm.

1) § ar fr(z) converges for almost all x € X [p].
k=1
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Remark Here we are considering the limit of the partial sum operators
Skf. I) and II) in some way recover the result of [2].

Proof. Part I) is trivial.
Part II) follows from the fact that the maximal function Mf can be
bounded by combining propositions 3.2 and 3.3:

Z aglog(k + 1) fi

k=1

(3-8) IMF]l, < K

p

O

4. Main Result

In the following we will consider the case LP, with p > 2. Let f € span{f;};

[e.°]
, [ = > arfr and consider m,, : N — N an increasing sequence: m, <

k=1
Mp+1
Mp+1, then if we define g, ;== > apfi = Smosr f—Sm, f, {95}, is again
k=mn+1

an unconditional basic 5equence with this in mind, as a direct application

of theorem 3.1 we get that if Z aglog(k + 1)gg converges in the norm of

LP(X, F, ) then Sy, f(x) Converges for almost all x € X [u], asn — co. In
particular, if m, = 2", since the { f;}; are an unconditional basic sequence:

00 on+1 ) on+1 %
Z log(n+1) Z apfr|| < Cp Z (log(n +1))? Z g fr|?
n=1 k=2"+1 P n=1 k=2"+1

p

SIS

2n+1
<Gy <Z loglog(2*™))* > |akfk\2)

k=21
P
oo 2ntl %
<20, Z Z |lax frloglog(k + 1)|?
n=1 k=2n41
P

So we have proved the following:
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Proposition 4.1. Let p > 2 and { fx} be an unconditional basic sequence
such that

o0

Z agloglog(k + 1) fx,

k=1
converges in the norm of LP(X, F, i), then Son f(x) converges for almost all
x € X [p], asn — oo.

From this fact, we may prove the main result of this work, but as in as
n [10], the proof relies in a maximal inequality which we shall prove first:

Lemma 4.1. Fixed {f;}; an unconconditional basic sequence, for every
0 < € < 2, there exists a constant C(e) depending only on € such that for
all (a;); € CN, and all N € N:

1P
o 242\ %7
p < -5

maz |if()Pdu < C(e)log(2N) 2 Z\azfz (zog 5 ) ,
X p
(4.1)
where A% = Z az.
Proof. Let us proceed as in [10], consider the case N = 22" = n,;

r € N; and define I,, = {1,...,2?"} and for p = 0,1,...,7 — 1 set J, =
{22 41,...,22"").
Now, we can find a permutation m € Sy, such that:

’aﬂ'(l)| > |a7r(2)‘ 22 |a7r(nr)’ )
and we can also find a permutation 7’ € S1,,, such that

mom'(ny+1) <..<mow (npt1) ,

that is, a permutation such that m(.J,) is reordered with the natural order
of the indexes, for each p = 0,...,7 — 1. On the other hand, for some N(z):

max |S;f(z)| = [Sn()f ()]

1<i<N

< |a7r(1)f7r(1)($)|+|a7r(2) w( |+Z Z Aron’ (4) Jron! z)( )1{k :ror’ (k)< N(z)}

s=0 |i€Js
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< ar@) fa)(@)] + |ax@) fr2)(@)] + Zrkrgx

1=ns+1

k
D" Gror (i) from (i) (7).

315

Taking the p norm at each side of the inequality and by the triangle

inequality:

1
(X 157z )I”du) < lany |, Honal | Frca |, +

(4.2)
[ Jw)

k
Z Qron! (1) fﬂ'on”(i) (x)

i=ns+1

Apply the maximal inequality 3.8 obtained in the proof of theorem 3.1

to the finite sum to get:

1
(X max |Sif (@ )I”du) < IawmlHf7r(1>H1[,+law<2>|wa@)Hp+

1
r—1 Ns+1 % P
tE | |3 Jace few@logi + DI | dn
s=0 X i=ns+1
Now, if i < 22° then log(i + 1) < 4325 so that:
1
r—1 o e Ns41 % P
1225 | [ Jarpfep@logi+ DE | dp
s=0 X i=ns+1

b

/ ( lan (o) frtiy () (log (i + 1)>2E) dp
X

B =

IN
WM\

i=ns+1

du |
s:O i=ns+1

1
r—1 €q _seq % r—1 n5+1 g !
< (zonzT) S [ X lantodeo @ Pliogti + )P
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by Holder’s inequality, with % + % = 1. Since p > 2 then 4.3 is less than:

(4.4) 45 (%)Q Zya Fniir (@ UOg(iH)P—f) du)

Ny
Since V k € J, U{1,2}: k|a,r(k)|2 < ¥ |aﬂ(i)|2, if we write A2, =
i=1

Ny
> |a7r(i)|2 then 4.4 is less than:
i=1

1
[ 2% 242, \*°°
<4z . / (i) fr lo fir d
(2#—1) 4 (Z| o) (@ ( glaml2> ) :

3=

Combining inequalities 4.2 and 4.5 we obtain:

1<i<N

2A2n 2—e€\ 2
/ Z |a fTK‘(’L log 7«2 dp
[
X

Now we can give a proof for theorem 1.1:

(4.6) (X max |S;f(z )Ipdu) < C(e)log(ny +1)% x (...)

B =

O

Proof. (Theorem 1.1) Write A2y = 3 |a;|?, where Iy = {2V +
i€ln
1,...,2N*11, Using lemma 4.1 we can estimate as in 3.3.

p

GElf < cow 1) 2 (g 2401 )
[Mios]) < cow+DF {3 ol 19—

keln_1
p
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00 2A 2—e % P
Z HM fH < C(e Z (N +1)° Z g fr|? (log @ ]T 1)
N=1 N=1 keln_1 Ok
P
00 2A2N . 2—e¢ % P
< 2C(e Z Z g fr]? (log72> log(k)¢
N=1|| \keln_, ||
P
2—e % P
< 2C(e Z Z \a, fr|? (log 1) log(k)*
=1k€ln_1 Jax?
p

(p > 2 and Monotone Convergence)
Then under the hypothesis of theorem 1.1 we have:

(@) > Mg < oo
N=1

Now, we can proceed as in theorem 3.1 or we can use equation 4.7 to
obtain:

Jim M f () =

On the other hand the (unconditional) convergence in LP norm of

i o 242,\'77
Z Z aleg(])Z (log a2n> fis

n=0j€el, J

implies the convergence in LP norm of
e}

(4.8) Z agloglog(k + 1) fx, .
k=1

As a consequence of proposition 4.1, and since given m € N and 27! <
n < 2™ for almost all z € X the following holds:

[Snf (@) = f(2)] < MEy i1 () + |Som f () — f(2)]
where f = § arfr ( LP), then by proposition 4.1, Som f(x) converges to
k=1

f(x) [p]-a.e. as m — oo, and on the other hand Mgnﬂf(z) — 0, so that
the proof is complete. O
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