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Abstract

In this paper we work with the variety of commutative algebras
satisfying the identity β((x2y)x− ((yx)x)x) + γ(x3y− ((yx)x)x) = 0,
where β, γ are scalars. They are called generalized almost-Jordan
algebras. We prove that this variety is equivalent to the variety of
commutative algebras satisfying (3β + γ)(Gy(x, z, t) − Gx(y, z, t)) +
(β + 3γ)(J(x, z, t)y − J(y, z, t)x) = 0, for all x, y, z, t ∈ A, where
J(x, y, z) = (xy)z+(yz)x+(zx)y and Gx(y, z, t) = (yz, x, t)+(yt, x, z)+
(zt, x, y). Moreover, we prove that if A is a commutative algebra, then
J(x, z, t)y = J(y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a gen-
eralized almost-Jordan algebra for β = 1 and γ = −3, that is, A
satisfies the identity (x2y)x + 2

¡
(yx)x

¢
x − 3x3y = 0 and we study

this identity. We also prove that if A is a commutative algebra, then
Gy(x, z, t) = Gx(y, z, t), for all x, y, z, t ∈ A, if and only if A is an
almost-Jordan or a Lie Triple algebra.
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1. Introduction

In this work, F is a field of charF 6= 2 and A be a commutative not
necessarily associative algebra over F .

The algebra A is called Jordan algebra if satisfies (y2, x, y) = 0, for all
y, x ∈ A. For properties of these algebras see [10]. It is know, see Osborn
[7], that a Jordan algebra satisfies the identity

3(x2y)x− 2((yx)x)x− x3y = 0.(1.1)

Algebras satisfying identity (1.1), called Lie Triple algebras or almost-
Jordan algebras have been studied by Hentzel, Peresi, Osborn, Peterson
and Sidorov [5, 7, 8, 9, 11].

Identity (1.1) was generalized in 1988 by Carini, Hentzel and Piaccentini-
Cattaneo, see [3]. After that, Arenas and Labra call them generalized
almost-Jordan algebras, see [1].

We say that A is a generalized almost-Jordan algebra if it satisfies:

β

µ
(x2y)x− ((yx)x)x

¶
+ γ

µ
x3y − ((yx)x)x

¶
= 0,(1.2)

for all x, y ∈ A, where β, γ ∈ F and (β, γ) 6= (0, 0).

In the study of degree four identities not implied by conmutativity,
Osborn [8] classified those that were implied by the fact of possessing a
unit element. Carini, Hentzel and Piacentini-Cattaneo [3] extended this
work by dropping the restriction on the existence of the unit element. The
identity defining a generalized almost-Jordan algebra with β, γ ∈ F appears
as one of these identities.

We have:

(x2, y, x) = (x2y)x− x2(yx), (x2, x, y) = x3y − x2(yx), (yx, x, x) =
((yx)x)x− (yx)x2,

so

(x2, y, x)−(yx, x, x) = (x2y)x−((yx)x)x, (x2, x, y)−(yx, x, x) = x3y−((yx)x)x

and
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0 = β

µ
(x2y)x− ((yx)x)x

¶
+ γ

µ
x3y − ((yx)x)x

¶
=

β

µ
(x2, y, x)− (yx, x, x)

¶
+ γ

µ
(x2, x, y)− (yx, x, x)

¶
Therefore, in terms of associators a generalized almost-Jordan algebra

satisfies,
β(x2, y, x) + γ(x2, x, y) = (β + γ)(yx, x, x)(1.3)

If β = 3 and γ = −1, we obtain an almost-Jordan algebra, that is, A
satisfies

3(x2, y, x) = (x2, x, y) + 2(yx, x, x).

Generalized almost-Jordan algebras A have been studied in [3] where
the authors proved that for almost all the algebras, simplicity implies asso-
ciativity, in [1], where the authors proved that these algebras always have
a trace form in terms of the trace of right multiplication operators. They
also prove that if A is finite-dimensional and solvable, then it is nilpotent.
In [2] the author found the Wedderburn decomposition of A assuming that
for every ideal I of A either I has a non zero idempotent or I ⊂ R,R the
solvable radical of A and the quotient A/R is separable, in [4] the authors
give a characterization of representations and irreducibles modules of these
algebras, and in [6] where, assuming that A also satisfies ((xx)x)x = 0 the
authors proved the existence of an ideal I of A such that AI = IA = 0 and
the quotient algebra A/I is power-associative.

In this paper we prove the equivalence between generalized almost-
Jordan algebras, and commutative algebras satisfying the identity (3β +
γ)(Gy(x, z, t) −Gx(y, z, t)) + (β + 3γ)(J(x, z, t)y − J(y, z, t)x) = 0, for all
x, y, z, t ∈ A, where J(x, y, z) = (xy)z + (yz)x + (zx)y and Gx(y, z, t) =
(yz, x, t)+(yt, x, z)+(zt, x, y), Theorem 3.2. We prove that a Jordan algebra
satisfies the identity Gx(y, z, t) = 0 for all x, y, z, t ∈ A. Conversely if
charF 6= 3, then every commutative algebra Gx(y, z, t) = 0 for all x, y, z, t ∈
A is a Jordan algebra, Proposition 3.1. Moreover, we prove that if A is a
commutative algebra, then J(x, z, t)y = J(y, z, t)x for all x, y, z, t ∈ A, if
and only if A is a generalized almost-Jordan algebra for β = 1 and γ = −3,
that is, A satisfies the identity (x2y)x+2

³
(yx)x

´
x−3x3y = 0, Proposition

3.4. We also prove that if A is a commutative algebra, then Gy(x, z, t) =
Gx(y, z, t), for all x, y, z, t ∈ A, if and only if A is an almost-Jordan algebra,
Proposition 3.5. Finally, we give same new identities, Theorem 3.13 and
Proposition 3.15 for commutative algebras satisfying the identity (x2y)x+

2
³
(yx)x

´
x− 3x3y = 0.



508 Henrique Guzzo Jr. and Alicia Labra

2. Preliminaries

In this section we found relationships among generalized almost-Jordan
algebras and alternative algebras, Jordan algebras, baric algebras or b-
algebras.

Proposition 2.1. Let A be a commutative right alternative algebra. Then
A is a generalized almost-Jordan algebra, for β = γ = 1.

Proof: Since A is a right alternative algebra, then A is an alternative
algebra and (x, y, z) = −(x, z, y), so by (1.2) we have, (x2, y, x)+(x2, x, y) =
(x2, y, x)− (x2, y, x) = 0 = 2(yx, x, x). 2

If A is a F -algebra, then we will define a new algebra A0 = Fe⊕A, as
vector space, and the multiplication given by:

(αe+ u)(βe+ v) = αβe+ uv,

where e is an idempotent, α, β ∈ F and u, v ∈ A.

Proposition 2.2. Let A be a generalized almost-Jordan algebra. Then A0

is a generalized almost-Jordan algebra and ω:A0 → F , given by ω(αe+u) =
α, is a nonzero homomorphism of algebras.

Proof: Let α, β ∈ F, u, v ∈ A, x = αe + u and y = βe + v. Since ez = 0
and e2 = e for all z ∈ A, then (a, b, c) = 0, if a, b, c ∈ A ∪ {e}, and at least
one of them is equal to e, so

x2 = α2e+ u2, yx = αβe+ vu,
(x2, y, x) = (α2e+ u2, βe+ v, αe+ u) = α3β(e, e, e) + (u2, v, u) = (u2, v, u)

(x2, x, y) = (u2, u, v) and (yx, x, x) = (vu, u, u).

therefore
β(x2, y, x) + γ(x2, x, y) = β(u2, v, u) + γ(u2, u, v) = (β + γ)(vu, u, u) =

(β + γ)(yx, x, x). 2

Definition 2.3. Let A be a F -algebra. If ω:A → F is a nonzero algebra
homomorphism, then the ordered pair (A,ω) is called a baric algebra or
b-algebra. When a b-algebra (A,ω) is a generalized almost-Jordan algebra,
then we call it generalized almost-Jordan b-algebra.

Corollary 2.4. LetA be a generalized almost-Jordan algebra. Then (A0, ω)
is a generalized almost-Jordan b-algebra.
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If A is a F -algebra, then we will define a new algebra A# = F ⊕A, as
vector space, and the multiplication given by:

(α+ u)(β + v) = αβ + αv + βu+ uv,

where α, β ∈ F and u, v ∈ A, A# has unit element 1 + 0 = 1.

Theorem 2.5. Let A be a generalized almost-Jordan algebra. Then A#

is a generalized almost-Jordan algebra if and only if β + 3γ = 0 or A is an
alternative algebra.

Proof: Let α, β ∈ F, u, v ∈ A,x = α + u and y = β + v. We note that
(1, a, b) = (a, 1, b) = (a, b, 1) = 0 = (a, b, a), for all a, b ∈ A#, so

x2 = α2 + 2αu+ u2, yx = αβ + αv + βu+ vu,
(x2, y, x) = (α2+2αu+u2, β+v, α+u) = 2α(u, v, u)+(u2, v, u) = (u2, v, u),

(x2, x, y) = (α2 + 2αu+ u2, α+ u, β + v) = 2α(u, u, v) + (u2, u, v),
(yx, x, x) = (αβ + αv + βu+ vu, α+ u, α+ u) = α(v, u, u) + (vu, u, u),

(u, u, v) = u2v − u(uv) = −
µ
(vu)u− vu2)

¶
= −(v, u, u).

therefore
β(x2, y, x) + γ(x2, x, y)− (β+ γ)(yx, x, x) = β(u2, v, u) + 2αγ(u, u, v) +

γ(u2, u, v) − α(β + γ)(v, u, u) − (β + γ)(vu, u, u) = 2αγ(u, u, v) − α(β +
γ)(v, u, u) = −2αγ(v, u, u)− α(β + γ)(v, u, u) = −α(3γ + β)(v, u, u). Since
α is arbitrary, then the Theorem follows. 2

Corollary 2.6. LetA be an almost-Jordan algebra. ThenA# is an almost-
Jordan algebra.

Corollary 2.7. If A is an almost-Jordan algebra and ω:A# → F is given
by ω(α+ u) = α. Then (A#, ω) is an almost-Jordan b-algebra.

Example 2.8. Let F be a field of characteristic not 2 and A be a commu-
tative F -algebra of basis {s, t} with the multiplication:

s t

s s+ t 1
2t

t 1
2 t 0

This algebra is an almost-Jordan algebra, but is not a Jordan algebra,
see [7]. Moreover, it is a b-algebra and the only idempotent is zero.

In fact, let ω:A→ F given by ω(as+ bt) = a, where a, b ∈ F , then
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ω((as+ bt)(a0s+ b0t)) = ω
³
aa0s+ 1

2(2aa
0 + ab0 + a0b)t

´
= aa0 =

ω(as+ bt)ω(a0s+ b0t), for all a, a0, b, b0 ∈ F ,

so, this algebra is a b-algebra.

If e = as+ bt ∈ A, such that e2 = e, then

as+ bt = a2s+
1

2
(2a2 + 2ab)t = a2s+ (a2 + ab)t,

so a = a2 and b = a2 + ab, therefore, a = b = 0, then e = 0 is the only
idempotent of A.

Example 2.9. Let F be a field and A be a commutative F -algebra of basis
{x1, x2, x3, x4} with the multiplication:

x1 x2 x3 x4
x1 x2 x3 0 0

x2 x3 x3 0 x3

x3 0 0 0 0

x4 0 x3 0 x2 + x3

In [1] the authors prove that this algebra is a generalized almost-Jordan
algebra for all β, γ ∈ F , because (x2y)x = ((yx)x)x = x3y = 0 for all x, y ∈
A. Since (x1, x1, x2) = x21x2 − x1(x1x2) = x3, then A is not alternative
algebra.

We will to prove that this algebra is not a b-algebra.

Let ω:A→ F be an algebra homomorphism, since x23 = 0, x
2
2 = x3, x

2
1 =

x2 and x24 = x2+ x3, then ω(x3) = ω(x2) = ω(x1) = ω(x4) = 0, so A is not
a b-algebra.

3. Main Results

Let A be a generalized almost-Jordan algebra.

Linearising (1.3) we have,

β

µ
(x2, y, z) + 2(xz, y, x)

¶
+ γ

µ
(x2, z, y) + 2(xz, x, y)

¶
=

= (β + γ)

µ
(yx, x, z) + (yx, z, x) + (yz, x, x)

¶(3.1)
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2β

µ
(tx, y, z) + (xz, y, t) + (tz, y, x)

¶
+

+2γ

µ
(tx, z, y) + (xz, t, y) + (tz, x, y)

¶
=

= (β + γ)

µ
(yx, t, z) + (yx, z, t)+

+(yt, x, z) + (yt, z, x) + (yz, x, t) + (yz, t, x)

¶
(3.2)

Let Gx:A×A×A→ A given by

Gx(y, z, t) = (yz, x, t) + (yt, x, z) + (zt, x, y)

It is easy to see that, Gx is 3-lineal function and symmetric in ev-
ery two variables. Moreover, the complete linearization of the (x2, y, x)
is 2Gx(y, z, t). If A is a Jordan algebra, then Gx(y, z, t) = 0, for all
x, y, z, t ∈ A. Conversely we have.

Proposition 3.1. Let A be a commutative algebra over a field of charac-
teristic not 3, such that

Gx(y, z, t) = 0,

for all x, y, z, t ∈ A. Then A is a Jordan algebra.

Proof: Setting z = t = y in Gx(y, z, t) = (yz, x, t)+(yt, x, z)+(zt, x, y) = 0,
we get (y2, x, y) + (y2, x, y) + (y2, x, y) = 0, so 3(y2, x, y) = 0, then A is a
Jordan algebra. 2

Theorem 3.2. A is a generalized almost-Jordan algebra, if and only if A
is a commutative algebra satisfying

(3β+ γ)

µ
Gy(x, z, t)−Gx(y, z, t)

¶
+(β+3γ)

µ
J(x, z, t)y−J(y, z, t)x

¶
= 0,

for all x, y, z, t ∈ A, where J(a, b, c) = (ab)c+ (bc)a+ (ca)b.

Proof: By (3.2) we have,

2βGy(x, z, t)+2γ

µ
(tx, z, y)+(xz, t, y)+(tz, x, y)

¶
= (β+γ)

µ
Gt(x, y, z)+

Gx(y, z, t) +Gz(x, y, t)

¶
− (β + γ)

µ
(xz, t, y) + (tz, x, y) + (tx, z, y)

¶
, so

2βGy(x, z, t) + (β + 3γ)

µ
(xz, t, y) + (tz, x, y) + (tx, z, y)

¶
=

(β + γ)

µ
Gt(x, y, z) +Gx(y, z, t) +Gz(x, y, t)

¶
.

(3.3)
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In (3.3), replacing x by y and y by x, we have

2βGx(y, z, t) + (β + 3γ)

µ
(yz, t, x) + (tz, y, x) + (ty, z, x)

¶
=

(β + γ)

µ
Gt(x, y, z) +Gy(x, z, t) +Gz(x, y, t)

¶
.

(3.4)

By (3.3) and (3.4),

2β

µ
Gy(x, z, t)−Gx(y, z, t)

¶
+

(β + 3γ)

µ
(xz, t, y) + (tz, x, y) + (tx, z, y)−

−(yz, t, x)− (tz, y, x)− (ty, z, x)
¶
=

(β + γ)

µ
Gx(y, z, t)−Hy(x, z, t)

¶
, so

(3β + γ)

µ
Gy(x, z, t)−Gx(y, z, t)

¶
+

(β + 3γ)

µ
(xz, t, y) + (tz, x, y) + (tx, z, y)

−(yz, t, x)− (tz, y, x)− (ty, z, x)
¶
= 0, but

(xz, t, y) + (tz, x, y) + (tx, z, y)− (yz, t, x)− (tz, y, x)− (ty, z, x) =
((xz)t)y − (xz)(ty) + ((tz)x)y − (tz)(xy) + ((tx)z)y − (tx)(zy)−
((yz)t)x+ (yz)(tx)− ((tz)y)x+ (tz)(yx)− ((ty)z)x+ (ty)(zx) =µ

(xz)t+(tz)x+(tx)z

¶
y−

µ
(yz)t+(tz)y+(ty)z

¶
x = J(x, z, t)y−J(y, z, t)x,

where J(a, b, c) = (ab)c+ (bc)a+ (ca)b. Therefore,

(3β+ γ)

µ
Gy(x, z, t)−Gx(y, z, t)

¶
+(β+3γ)

µ
J(x, z, t)y−J(y, z, t)x

¶
= 0.

(3.5)

Conversely, setting z = t = x in (3.5) we have

(3β+γ)

µ
Gy(x, x, x)−Gx(y, x, x)

¶
+(β+3γ)

µ
J(x, x, x)y−J(y, x, x)x

¶
= 0. (∗)

Then, using the definition of Gx, Gy and the conmutativity of the alge-
bra we obtain:
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Gy(x, x, x)−Gx(y, x, x) = 3(x
2, y, x)− 2(yx, x, x)− (x2, x, y)

= 3(x2y)x− 3x2(yx)− 2((yx)x)x+ 2(yx)x2 − x3y + x2(yx)
= 3(x2y)x− 2((yx)x)x− x3y.

Moreover, J(x, z, t)y − J(y, z, t)x = 3x3y − 2((yx)x)x− (x2y)x.
Replacing these values in (*) we get

(3β+γ)

µ
3(x2y)x−2((yx)x)x−x3y

¶
+(β+3γ)

µ
3x3y−2((yx)x)x−(x2y)x

¶
= 0

Reordering these terms we obtain

8γx3y − (8β + 8γ)((yx)x)x+ 8β(x2y)x = 0.

Since characteristic of the field is different of 2 we get

γx3y − (β + γ)((yx)x)x+ β(x2y)x = 0,

and by identity (2), A is a generalized almost-Jordan algebra. 2

In [7], Osborn introduced two mappings,

H(y;x, z, t) =
³
y(xz)

´
t+

³
y(zt)

´
x+

³
y(tx)

´
z and

K(y, x, z, t) = (xy)(zt) + (yz)(xt) + (yt)(xz), so

Gy(x, z, t) = (xz, y, t) + (xt, y, z) + (zt, y, x) =
³
(xz)y)

´
t+

³
(xt)y

´
z +³

(zt)y
´
x− (xz)(yt)− (xt)(yz)− (zt)(yx) = H(y;x, z, t)−K(y, x, z, t),

but K(x, y, z, t) = (yx)(zt) + (xz)(yt) + (xt)(yz) = K(y, x, z, t), then

Gy(x, z, t)−Gx(y, z, t) = H(x; y, z, t)−H(y;x, z, t),(3.6)

for all x, y, z, t ∈ A.

Corollary 3.3. If A satisfies the identity (x2)2 = x4 for all x ∈ A and
β + 3γ 6= 0, then J(x, z, t)y = J(y, z, t)x.

Proof: By [7], we have H(y;x, z, t) = H(x; y, z, t) for all x, y, z, t ∈ A and
by Theorem 3.2, J(x, z, t)y = J(y, z, t)x. 2

Proposition 3.4. Let A be a commutative algebra. Then the following
identities are equivalent:
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1. (x2y)x+ 2((yx)x)x− 3x3y = 0,

2. J(x, z, t)y = J(y, z, t)x.

Proof: Since A satisfies the identity (x2y)x+ 2((yx)x)x− 3x3y = 0, then
A is a generalized almost-Jordan algebra for β = 1, γ = −3 and β+3γ 6= 0,
so by (3.5), J(x, z, t)y = J(y, z, t)x.

Conversely, setting z = t = x in J(x, z, t)y = J(y, z, t)x, we get J(x, x, x)y =
J(y, x, x)x, that is 3x3y = ((yx)x)x+ (x2y)x+ ((yx)x)x, so A satisfies the
identity (x2y)x+ 2((yx)x)x− 3x3y = 0. 2

Proposition 3.5. Let A be a commutative algebra. Then A is an almost-
Jordan algebra if and only if

Gy(x, z, t) = Gx(y, z, t),

for all x, y, z, t ∈ A.

Proof: Since A is an almost-Jordan algebra, β+3γ = 0 so 3β+γ 6= 0, and
by (3.5),

µ
Gy(x, z, t)−Gx(y, z, t)

¶
= 0, so Gy(x, z, t) = Gx(y, z, t).

Conversely, if A satisfies the identity, Gy(x, z, t) = Gx(y, z, t), then
developing the associators we have

[(yz)x− (xz)y]t+ [(yt)x− (xt)y]z + ((zt)x)y − ((zt)y)x = 0.

Since (y, z, x) = (yz)x− y(zx) and (y, t, x) = (yt)x− y(tx), we get

(y, z, x)t+ (y, t, x)z + ((zt)x)y − ((zt)y)x = 0.

Replacing (zt, x, y) = ((zt)x)y−(zt)(xy) and (zt, y, x) = ((zt)y)x−(zt)(xy)
in the above expression we obtain

(y, z, x)t+ (y, t, x)z + (zt, x, y)− (zt, y, x) = 0.(3.7)

Since A is a commutative algebra, then (a, b, c) = −(c, b, a) and (3.7)
becames

(x, z, y)t+ (x, t, y)z + (y, x, zt)− (x, y, zt) = 0.(3.8)

Setting z = t = x in (3.8), we obtain

2(x, x, y)x+ (y, x, x2)− (x, y, x2) = 0.
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Developing the associators and using the commutativity we get

3(x2y)x− 2(x(xy))x− yx3 = 0.

By identity (1.1), A is an almost-Jordan algebra. 2

By identity (3.6), we have

Corollary 3.6. Let A be a commutative algebra. Then A is an almost-
Jordan algebra if and only if

H(y;x, z, t) = H(x; y, z, t),

for all x, y, z, t ∈ A.

By [7], we have

Proposition 3.7. If A satisfies the identity (x2)2 = x4 for all x ∈ A, then
A is an almost-Jordan algebra.

Remark 3.8. The converse of the Proposition 3.7 is note true. Let A be
the algebra of Example 2.8, so s4 = s+ 7

4t and (s
2)2 = s+ 2t 6= s4.

An algebra A is called power-associative algebra if for all x ∈ A, the
subalgebra A(x) of A generated by x is associative algebra.

Corollary 3.9. If A is a commutative power-associative algebra, then A
is an almost-Jordan algebra.

By Corollaries 3.3 and 3.9, we have

Proposition 3.10. If A is a commutative power-associative algebra and
β+3γ 6= 0, then A is an almost-Jordan algebra and J(x, z, t)y = J(y, z, t)x.

Corollary 3.11. If A is a commutative power-associative algebra and β+
3γ 6= 0, then the following identities hold,

1. 3(x2y)x− 2
³
(yx)x)

´
x− x3y = 0,

2. (x2y)x+ 2
³
(yx)x

´
x− 3x3y = 0.

for all x, y ∈ A.
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Remark 3.12. The converse of the Corollary 3.11 is note true. Let A
be the algebra of Example 2.9, so A satisfies both identities, but A is not
power-associative algebra, because x41 = 0 and (x

2
1)
2 = x3.

Let A be a commutative algebra which satisfies the identities of Corol-
lary 3.11, then (x2y)x = ((yx)x)x = x3y for all x, y ∈ A. In this case the
converse is true.

Next, let A be a commutative non necessarily power-associative algebra,
so identities (1) and (2) of the above Corollary are not equivalent. Since
identity (1), a Lie triple or almost-Jordan algebra has been largely studied
we will study an algebra A satisfying

(x2y)x+ 2
³
(yx)x

´
x− 3x3y = 0,(3.9)

for all x, y ∈ A, which is identity (2) of Corollary 3.11.
It is known (see [1]) that every finite dimensional solvable algebra satis-

fiyng (3.9) is nilpotent. If R is radical of A and A/R is solvable, then A has
Wedderburn decomposition, (see [2]). Moreover, if A has an idempotent el-
ement, then A = A0⊕A1⊕A−3

2
, where Ai = {x ∈ A | ex = ix}, i = 0, 1,−32 ,

is the Peirce decomposition of A. The subspaces Ai satisfies the relations,
(see [2]):

A20 ⊆ A0, A
2
1 ⊆ A1, A0A1 = {0} = A− 3

2
A0 = A2− 3

2

, A− 3
2
A1 ⊆ A−3

2
.

In this work we give same new identities.
Substituting y = xk in (3.9), we get (x2xk)x+ 2xk+3 − 3x3xk = 0, so

2xk+3 = 3x3xk − (x2xk)x, k ≥ 2(3.10)

The identity (3.9) is equivalent to

(x2, y, x) + 2(yx, x, x)− 3(x2, x, y) = 0,(3.11)

for all x, y ∈ A.
Linearising (3.11), we have

2(xz, y, x) + (x2, y, z) + 2(yz, x, x) + 2(yx, z, x) + 2(yx, x, z)−
−6(xz, x, y)− 3(x2, z, y) = 0(3.12)

Interchanging y and z, we have

2(xy, z, x) + (x2, z, y) + 2(yz, x, x) + 2(zx, y, x) + 2(zx, x, y)−
−6(xy, x, z)− 3(x2, y, z) = 0
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Subtracting both identities and canceling out by the factor 4, we obtain

(x2, y, z)− (x2, z, y) + 2(yx, x, z)− 2(zx, x, y) = 0,(3.13)

so (x2, y, z)+2(yx, x, z) = (x2, z, y)+2(zx, x, y), and substituting in identity
(3.11), we get

(xz, y, x) + (yz, x, x) + (yx, z, x)− 2(xz, x, y)− (x2, z, y) = 0(3.14)

Theorem 3.13. Let A be an algebra which satisfies identity (3.9). Then
A satisfies the following identities for i, j ≥ 2, i 6= j:

1. (x2, xi, xj) = 2
³
xj+2xi − xi+2xj

´
,

2. 2xj+2xi = (xj+1xi)x+ (xi+1xj)x+ ((xixj)x)x− (x2xj)xi.

Proof: Setting y = xi, z = xj and then y = xj , z = xi in identity (3.14),
we have,

(xj+1, xi, x) + (xixj , x, x) + (xi+1, xj , x)− 2(xj+1, x, xi)− (x2, xj , xi) = 0,
(xi+1, xj , x) + (xjxi, x, x) + (xj+1, xi, x)− 2(xi+1, x, xj)− (x2, xi, xj) = 0.

Subtracting both identities we obtain

−2(xj+1, x, xi)− (x2, xj , xi) + 2(xi+1, x, xj) + (x2, xi, xj) = 0,

Developing the associators, we obtain

−2xj+2xi + 2xi+2xj + (x2xi)xj − x2(xixj) = 0,

This is identity (1).
To get identity (2) we use the commutativity and we will develop

the associator in the identity: (xj+1, xi, x) + (xixj , x, x) + (xi+1, xj , x) −
2(xj+1, x, xi)− (x2, xj , xi) = 0. 2

Remark 3.14. Setting y = z = xi in identity (3.14), we have

2xi+2xi = 2(xi+1xi)x+ ((xi)2x)x− (xi)2x2 − (x2xi)xi + x2(xi)2.

Proposition 3.15. LetA be an algebra which satisfies identity (3.9). Then
A satisfies the following identities for k ≥ 1:

1. 2x4xk − 2xk+2x2 + (x2)2xk − x2(x2xk) = 0,
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2. 4xk+4 = 4(x3xk)x+ 3x3xk+1 − 2xk+2x2 − x2(x2xk),

3. 4xk+4 = 4(x3xk)x+ 3x3xk+1 − 2x4xk − (x2)2xk.

Proof: Setting i = 2, j = k in (1) of Theorem 3.13, we obtain identity (1).
Setting i = 2, j = k in (2) of Theorem 3.13, we obtain

2xk+2x2 = (xk+1x2)x+ (x3xk)x+ ((x2xk)x)x− (x2xk)x2,

Using the identity (3.10), we get

2xk+2x2 = (3xk+1x3 − 2xk+4) + (x3xk)x+ (3xkx3 − 2xk+3)x− (x2xk)x2 =
3xk+1x3 − 4xk+4 + 4(x3xk)x− (x2xk)x2,

which is identity (2).
Finally identity (3) follows from identities (1) and (2). 2
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