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Abstract

A new definition of almost fuzzy compactness is introduced in L-
topological spaces by means of open L-sets and their inequality when
L is a complete DeMorgan algebra. It can also be characterized by
closed L-sets, regularly closed L-sets, regularly open L-sets and their
inequalities. When L is a completely distributive DeMorgan algebra,
its many characterizations are presented.
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1. Introduction

Almost compactness has also been generalized to L-topological spaces
by many authors (see [2, 3, 4, 6, 9, 10, 14, 15, 16]). These notions of
almost fuzzy compactness rely on the structure of the basis lattice L, where
L = [0, 1] or L is a completely distributive DeMorgan algebra. In [21], a
new definition of fuzzy compactness was presented in L-fuzzy topological
spaces by means of open L-sets and their inequality.

In this paper, based on [19, 21], we shall introduce a new definition of
almost fuzzy compactness in L-topological spaces. When L is a completely
distributive DeMorgan algebra, its many characterizations are presented.
From these characterizations we know that it is a generalization of the
notion of almost fuzzy compactness in [3, 9].

2. Preliminaries

Throughout this paper, (L,
W
,
V
,0 ) is a complete DeMorgan algebra and

X is a nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short)
on X. The smallest element and the largest element in LX are denoted by
0 and 1.

An element a in L is called a prime element if a ≥ b ∧ c implies a ≥ b
or a ≥ c. a in L is called a co-prime element if a0 is a prime element [7].
The set of non-unit prime elements in L is denoted by P (L). The set of
non-zero co-prime elements in L is denoted by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b
if and only if for every subset D ⊆ L, the relation b ≤ supD always
implies the existence of d ∈ D with a ≤ d [5]. In a completely distributive
DeMorgan algebra L, each element b is a supremum of {a ∈ L | a ≺ b}. In
the sense of [11, 23], {a ∈ L | a ≺ b} is the greatest minimal family of b,
denoted by β(b). Moreover for b ∈ L, define α(b) = {a ∈ L | a0 ≺ b0} and
α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX , we use the following notations in [20].

A(a) = {x ∈ X | A(x) 6≤ a}, A(a) = {x ∈ X | a ∈ β(A(x))},
A[a] = {x ∈ X | A(x) ≥ a}.

An L-topological space (or L-space for short) is a pair (X, T ), where T
is a subfamily of LX which contains 0, 1 and is closed for any suprema and
finite infima. T is called an L-topology on X. Each member of T is called
an open L-set and its quasi-complement is called a closed L-set.
Definition 2.1 ([11, 23]). For a topological space (X, τ), let ωL(τ) de-
note the family of all the lower semi-continuous maps from (X, τ) to L, i.e.,
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ωL(τ) = {A ∈ LX | A(a) ∈ τ, a ∈ L}. Then ωL(τ) is an L-topology on X,
in this case, (X,ωL(τ)) is called topologically generated by (X, τ).

Definition 2.2 ([11, 23]). An L-space (X,T ) is called weakly induced if
∀a ∈ L, ∀A ∈ T , it follows that A(a) ∈ [T ], where [T ] denotes the topology
formed by all crisp sets in T .

It is obvious that (X,ωL(τ)) is weakly induced.

Lemma 2.3 ([20]). Let (X, T ) be a weakly induced L-space, a ∈ L,A ∈
T . Then A(a) is an open L-set in [T ].

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of
Φ.

Definition 2.4 ([19, 21]). Let (X, T ) be an L-space. G ∈ LX is called
fuzzy compact if for every family U ⊆ T , it follows that

^
x∈X

Ã
G0(x) ∨

_
A∈U

A(x)

!
≤

_
V∈2(U)

^
x∈X

Ã
G0(x) ∨

_
A∈V

A(x)

!
.

Lemma 2.5 ([19, 21]). Let L be a complete Heyting algebra, f : X → Y
be a map, f→L : LX → LY is the extension of f , then for any family P ⊆ LY ,
we have:

_
y∈Y

Ã
f→L (G)(y) ∧

^
B∈P

B(y)

!
=
_
x∈X

Ã
G(x) ∧

^
B∈P

f←L (B)(x)

!
.

Definition 2.6 ([1]). Let (X, T1) and (Y, T2) be two L-spaces. A map
f : (X,T1)→ (Y, T2) is called

(1) almost continuous if f←L (G) ∈ T1 for all regularly open L-set G in
(Y, T2);

(2) weakly continuous if f←L (G) ≤ int(f←L (cl(G))) for every open L-set
G in (Y, T2).

Lemma 2.7 ([1]). Let (X, T1) and (Y, T2) be two L-spaces. A map f :
(X,T1)→ (Y, T2) is:

(1) almost continuous if and only if f←L (G) is closed in (X,T1) for all
regularly closed L-set G in (Y, T2).

(2) weakly continuous if and only if f←L (G) ≥ cl(f←L (int(G))) for every
closed L-set G in (Y,T2).
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Lemma 2.8 ([1]). The closure of an open L-set is regularly closed and
the interior of a closed L-set is regularly open.

Definition 2.9 ([8]). An L-space (X, T ) is said to be regular if every open
L-set G is a supremum of open L-sets whose closure is less that G.

3. Definition and characterizations of almost fuzzy compact-
ness

Definition 3.1. Let (X, T ) be an L-space. G ∈ LX is called almost fuzzy
compact if for every family U ⊆ T , it follows that

^
x∈X

Ã
G0(x) ∨

_
A∈U

A(x)

!
≤

_
V∈2(U)

^
x∈X

Ã
G0(x) ∨

_
A∈V

cl(A)(x)

!
.

Definition 3.2. Let (X, T ) be an L-space. G ∈ LX is called almost count-
ably fuzzy compact if for every countable family U ⊆ T , it follows that

^
x∈X

Ã
G0(x) ∨

_
A∈U

A(x)

!
≤

_
V∈2(U)

^
x∈X

Ã
G0(x) ∨

_
A∈V

cl(A)(x)

!
.

For an open L-set A, by A ≤ int(cl(A)) we can obtain the following
theorem.

Theorem 3.3. Fuzzy compactness⇒ almost fuzzy compactness⇒ almost
countable fuzzy compactness.

From Definition 3.1 and Definition 3.2 we can obtain the following the-
orem by using quasi-complement.

Theorem 3.4. Let (X, T ) be an L-space. G ∈ LX is almost (countably)
fuzzy compact if and only if for every (countable) family P ⊆ T 0, it follows
that

_
x∈X

Ã
G(x) ∧

^
A∈P

A(x)

!
≥

^
F∈2(P)

_
x∈X

Ã
G(x) ∧

^
A∈F

int(A)(x)

!
.

Definition 3.5 ([21]). Let (X, T ) be an L-space, a ∈ L\{1} and G ∈ LX .
A family A ⊆ LX is said to be
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(1) an a-shading of G if for any x ∈ X, it follows thatÃ
G0(x) ∨ W

A∈U
A(x)

!
6≤ a.

(2) a strong a-shading of G if
V

x∈X

Ã
G0(x) ∨ W

A∈U
A(x)

!
6≤ a.

(3) an a-remote family of G if for any x ∈ X, it follows thatÃ
G(x) ∧ V

B∈P
B(x)

!
6≥ a.

(4) a strong a-remote family of G if
W

x∈X

Ã
G(x) ∧ V

B∈P
B(x)

!
6≥ a.

From Definition 3.1, Definition 3.2, Theorem 3.4 and Theorem 3.5 we
immediately obtain the following result.

Theorem 3.6. Let (X,T ) be an L-space and G ∈ LX . Then the following
conditions are equivalent:

(1) G is almost (countably) fuzzy compact.
(2) For any a ∈ L\{1}, each (countable) open strong a-shading U of G

has a finite subfamily V such that V− is a strong a-shading of G, where
V− = {cl(A) | A ∈ V}.

(3) For any a ∈ L\{0}, each (countable) closed strong a-remote family
P of G has a finite subfamily F such that F◦ is a strong a-remote family
of G, where F◦ = {int(A) | A ∈ F}.

Moreover by means of regularly open L-sets and regularly closed L-
sets, we can give the following characterizations of almost (countable) fuzzy
compactness.

Theorem 3.7. Let (X,T ) be an L-space and G ∈ LX . Then the following
conditions are equivalent:

(1) G is almost (countably) fuzzy compact.
(2) For each (countable) family U of regularly open L-sets, it follows

that ^
x∈X

Ã
G0(x) ∨

_
A∈U

A(x)

!
≤

_
V∈2(U)

^
x∈X

Ã
G0(x) ∨

_
A∈V

cl(A)(x)

!
.

(3) For each (countable) family U of regularly closed L-sets, it follows
that _

x∈X

Ã
G(x) ∧

^
A∈U

A(x)

!
≥

^
V∈2(U)

_
x∈X

Ã
G(x) ∧

^
A∈V

int(A)(x)

!
.
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Proof. (2) ⇔ (3) is obvious. Because a regularly open L-set is open,
we easily obtain (1) ⇒ (2). Now we prove (2) ⇒ (1). Suppose that U is
a family of open L-sets. From Lemma 2.8 we know that int(cl(A)) is a
regularly open L-set for each A ∈ U . Hence by (2) we obtain

V
x∈X

Ã
G0(x) ∨ W

A∈U
A(x)

!

=
V

x∈X

Ã
G0(x) ∨ W

A∈U
int(A)(x)

!

≤ V
x∈X

Ã
G0(x) ∨ W

A∈U
int(cl(A))(x)

!

≤ W
V∈2(U)

V
x∈X

Ã
G0(x) ∨ W

A∈V
cl(int(cl(A)))(x)

!

≤ W
V∈2(U)

V
x∈X

Ã
G0(x) ∨ W

A∈V
cl(cl(A))(x)

!

=
W

V∈2(U)

V
x∈X

Ã
G0(x) ∨ W

A∈V
cl(A)(x)

!
.

This shows that (1) is true.

Analogous to Theorem 3.6 we have the following result.

Theorem 3.8. Let (X,T ) be an L-space and G ∈ LX . Then the following
conditions are equivalent:

(1) G is almost (countably) fuzzy compact.

(2) For any a ∈ L\{1}, each (countable) regularly open strong a-shading
U of G has a finite subfamily V such that V− is a strong a-shading of G.

(3) For any a ∈ L\{0}, each (countable) regularly closed strong a-
remote family P of G has a finite subfamily F such that F◦ is a strong
a-remote family of G.

Theorem 3.9. Let (X,T ) be a regular L-space and G ∈ LX . Then G is
fuzzy compact if and only if it is almost fuzzy compact.

Proof. The necessity is obvious. Now we prove the sufficiency. Let
{Ai}i∈Ω be a family of open L-sets. By regularity of (X,T ), we know that
for each i ∈ Ω, there exists a family {Bij | j ∈ ∆i} of open L-sets such
that Ai =

W
j∈∆i

Bij and cl(Bij) ≤ Ai. By almost fuzzy compactness of G,
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we know

V
x∈X

Ã
G0(x) ∨ W

i∈Ω
Ai(x)

!
=

V
x∈X

Ã
G0(x) ∨ W

i∈Ω

W
j∈∆i

Bij(x)

!

≤ W
Γ∈2(Ω)

W
Θi∈2(∆i)

V
x∈X

Ã
G0(x) ∨ W

i∈Γ

W
j∈Θi

cl(Bij)(x)

!

≤ W
Γ∈2(Ω)

V
x∈X

Ã
G0(x) ∨ W

i∈Γ
Ai(x)

!
.

Therefore G is fuzzy compact.

4. Some properties of almost fuzzy compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are
almost (countably) fuzzy compact, then G∨H is almost (countably) fuzzy
compact.

Proof. For any family P of closed L-sets, by Theorem 3.4 we have

W
x∈X

Ã
(G ∨H)(x) ∧ V

B∈P
B(x)

!

=

( W
x∈X

Ã
G(x) ∧ V

B∈P
B(x)

!)
∨
( W
x∈X

Ã
H(x) ∧ V

B∈P
B(x)

!)

≥
( V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
int(B)(x)

!)
∨( V

F∈2(P)

W
x∈X

Ã
H(x) ∧ V

B∈F
int(B)(x)

!)

=
V

F∈2(P)

W
x∈X

Ã
(G ∨H)(x) ∧ V

B∈F
int(B)(x)

!
.

This shows that G ∨H is almost fuzzy compact. 2

Theorem 4.2. If G is almost (countably) fuzzy compact, and H is clopen,
then G ∧H is almost (countably) fuzzy compact.

Proof. Since G is almost fuzzy compact, for any family P of closed
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L-sets, by Theorem 3.4 we have

W
x∈X

Ã
(G ∧H)(x) ∧ V

B∈P
B(x)

!

=
W

x∈X

⎛⎝G(x) ∧ V
B∈P

S
{H}

B(x)

⎞⎠
≥ V

F∈2(P∪{H})

W
x∈X

Ã
G(x) ∧ V

B∈F
int(B)(x)

!

=

( V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
int(B)(x)

!)

∧
( V
F∈2(P)

W
x∈X

Ã
G(x) ∧ int(H)(x) ∧ V

B∈F
int(B)(x)

!)

=

( V
F∈2(P)

W
x∈X

Ã
G(x) ∧ int(H)(x) ∧ V

B∈F
int(B)(x)

!)

=
V

F∈2(P)

W
x∈X

Ã
(G ∧H)(x) ∧ V

B∈F
int(B)(x)

!
.

This shows that G ∧H is almost fuzzy compact. 2

Theorem 4.3. Let L be a complete Heyting algebra, and let f : (X, T1)→
(Y, T2) be almost continuous. If G is almost (countably) fuzzy compact in
(X, T1), then so is f→L (G) in (Y, T2).

Proof. Suppose that P be a family of regularly closed L-sets, by
Lemma 2.5 and almost fuzzy compactness of G, we have

W
y∈Y

Ã
f→L (G)(y) ∧

V
B∈P

B(y)

!

=
W

x∈X

Ã
G(x) ∧ V

B∈P
f←L (B)(x)

!

≥ V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
int(f←L (B))(x)

!

≥ V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
f←L (int(B))(x)

!

=
V

F∈2(P)

W
y∈Y

Ã
f→L (G)(y) ∧

V
B∈F

int(B)(y)

!
.

Therefore f→L (G) is almost fuzzy compact.
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Theorem 4.4. Let L be a complete Heyting algebra, and let f : (X, T1)→
(Y, T2) be weakly continuous. If G is (countably) fuzzy compact in (X,T1),
then f→L (G) is almost (countably) fuzzy compact in (Y, T2).

Proof. Let P be a family of regularly closed L-sets, by Lemma 2.5 and
fuzzy compactness of G, we have

W
y∈Y

Ã
f→L (G)(y) ∧

V
B∈P

B(y)

!

=
W

x∈X

Ã
G(x) ∧ V

B∈P
f←L (B)(x)

!

≥ W
x∈X

Ã
G(x) ∧ V

B∈P
cl (f←L (int(B))) (x)

!

≥ V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
cl (f←L (int(B))) (x)

!

≥ V
F∈2(P)

W
x∈X

Ã
G(x) ∧ V

B∈F
f←L (int(B))(x)

!

=
V

F∈2(P)

W
y∈Y

Ã
f→L (G)(y) ∧

V
B∈F

int(B)(y)

!
.

Therefore f→L (G) is almost fuzzy compact.

5. Further characterizations of almost fuzzy compactness

In this section, we assume that L is a completely distributive DeMorgan
algebra.

Definition 5.1 ([21]). Let (X, T ) be an L-space, a ∈ L\{0} and G ∈ LX .
A family U ⊆ LX is called a βa-cover of G if for any x ∈ X, it follows

that a ∈ β

Ã
G0(x) ∨ W

A∈U
A(x)

!
. U is called a strong βa-cover of G if a ∈

β

Ã V
x∈X

Ã
G0(x) ∨ W

A∈U
A(x)

!!
.

Definition 5.2 ([21]). Let (X, T ) be an L-space, a ∈ L\{0} and G ∈ LX .
A family U ⊆ LX is called a Qa-cover of G if for any x ∈ X, it follows that
G0(x) ∨ W

A∈U
A(x) ≥ a.

Analogous to [21] we can obtain the following theorem.



84 Fu-Gui Shi

Theorem 5.3. Let (X,T ) be an L-space and G ∈ LX . Then the following
conditions are equivalent.

(1) G is almost (countably) fuzzy compact.
(2) For any a ∈ L\{0} (or a ∈ M(L)), each (countable) closed strong

a-remote family P of G has a finite subfamily F such that F◦ is an (a
strong) a-remote family of G.

(3) For any a ∈ L\{0} (or a ∈M(L)) and any (countable) closed strong
a-remote family P of G, there exist a finite subfamily F of P and b ∈ β(a)
(or b ∈ β∗(a)) such that F◦ is a (strong) b-remote family of G.

(4) For any a ∈ L\{1} (or a ∈ P (L)), each (countable) open strong
a-shading U of G has a finite subfamily V such that V− is an (a strong)
a-shading of G.

(5) For any a ∈ L\{1} (or a ∈ P (L)) and any (countable) open strong
a-shading U of G, there exist a finite subfamily V of U and b ∈ α(a) (or
b ∈ α∗(a)) such that V− is a (strong) b-shading of G.

(6) For any a ∈ L\{0} (or a ∈ M(L)), each (countable) open strong
βa-cover U of G has a finite subfamily V such that V− is a (strong) βa-cover
of G.

(7) For any a ∈ L\{0} (or a ∈M(L)) and any (countable) open strong
βa-cover U of G, there exist a finite subfamily V of U and b ∈ L (or b ∈
M(L)) with a ∈ β(b) such that V− is a (strong) βb-cover of G.

(8) For any a ∈ L\{0} (or a ∈ M(L)) and any b ∈ β(a)\{0}, each
(countable) open Qa-cover of G has a finite subfamily V such that V− is a
Qb-cover of G.

(9) For any a ∈ L\{0} (or a ∈ M(L)) and any b ∈ β(a)\{0} (or b ∈
β∗(a)), each (countable) open Qa-cover of G has a finite subfamily V such
that V− is a (strong) βb-cover of G.

Remark 5.4. In Theorem 5.3, ‘open’ can be replaced by ‘regularly open’,
and ‘closed’ can be replaced by ‘regularly closed’.

Remark 5.5. From (2) of Theorem 5.3 we know that our notion of almost
fuzzy compactness is a generalization of almost F-compactness in [3, 9].

The following theorem shows that almost (countable) fuzzy compactness
is a good extension.

Theorem 5.6. Let (X, τ) be a topological space and (X,ω(τ)) be gener-
ated topologically by (X, τ). Then (X,ω(τ)) is almost (countably) fuzzy
compact if and only if (X, τ) is almost (countably) compact.
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Proof. (Necessity) Let A be an open cover of (X, τ). Then {χA |

A ∈ A} is a family of open L-sets in (X,ω(τ)) with
V

x∈X

Ã W
A∈U

χA(x)

!
= 1.

From almost fuzzy compactness of (X,ω(τ)) we know that

_
V∈2(U)

^
x∈X

Ã _
A∈V

χcl(A)(x)

!
=

_
V∈2(U)

^
x∈X

Ã _
A∈V

cl(χA)(x)

!
= 1.

This implies that there exists V ∈ 2(U) such that V
x∈X

Ã W
A∈V

χcl(A)(x)

!
= 1.

Hence {cl(A) | A ∈ V} is a cover of (X, τ). Therefore (X, τ) is almost
compact.

(Sufficiency) Let U be a family of open L-sets in (X,ω(τ)) and letV
x∈X

Ã W
B∈U

B(x)

!
= a. If a = 0, then obviously we have

^
x∈X

Ã _
B∈U

B(x)

!
≤

_
V∈2(U)

^
x∈X

Ã _
A∈V

cl(B)(x)

!
.

Now we suppose that a 6= 0. In this case, for any b ∈ β(a)\{0} we have

b ∈ β

Ã ^
x∈X

Ã _
B∈U

B(x)

!!
⊆
\
x∈X

β

Ã _
B∈U

B(x)

!
=
\
x∈X

[
B∈U

β (B(x)) .

From Lemma 2.3 this implies that {B(b) | B ∈ U} is an open cover of
(X, τ). From almost fuzzy compactness of (X, τ) we know that there exists
V ∈ 2(U) such that {cl(B(b)) | B ∈ V} is a cover of (X, τ). From [17] we
can obtain that cl(B(b)) ⊆ cl(B)[b]. This shows that {cl(B)[b] | B ∈ V} is a

cover of (X, τ). Hence b ≤ V
x∈X

Ã W
B∈V

cl(B)(x)

!
. Further we have

b ≤
^
x∈X

Ã _
B∈V

cl(B)(x)

!
≤

_
V∈2(U)

^
x∈X

Ã _
B∈V

cl(B)(x)

!
.

This implies

^
x∈X

Ã _
B∈U

B(x)

!
= a =

_
{b | b ∈ β(a)} ≤

_
V∈2(U)

^
x∈X

Ã _
B∈V

cl(B)(x)

!
.

Therefore (X,ω(τ)) is almost fuzzy compact.
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