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Abstract

Let G be a group and C the field of complex numbers. Sup-
pose σ1, σ2 : G → G are endomorphisms satisfying the condition
σi(σi(x)) = x for all x in G and for i = 1, 2. In this paper, we find
the central solution f : G → C of the equation f(xy) + f(σ1(y)x) =
2f(x) + f(y) + f(σ2(y)) for all x, y ∈ G which is a variant of the
Drygas functional equation with two involutions. Further, we present
a generalization the above functional equation and determine its cen-
tral solutions. As an application, using the solutions of the generalized
equation, we determine the solutions f, g, h, k : G×G→ C of the func-
tional equation f(pr, qs)+ g(sp, rq) = 2f(p, q)+h(r, s)+ k(s, r) when
f satisfies the condition f(pr, qs) = f(rp, sq) for all p, q, r, s ∈ G.
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1. Introduction

The functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y)

for all x, y ∈ G, where G is a group written multiplicatively and y−1 is the
inverse of y, is known as the quadratic functional equation and it serves in
certain abstract spaces for the definition of norm. It was studied by many
authors including Jensen [8, 9], Jordan and von Neumann [10], Kurepa
[14], Aczél and Vincze [2], Aczél [1], Kannappan [11, 12, 13], and Yang
[24]. Sinopoulos [21] considered the following generalization of quadratic
functional equation

f(xy) + f(xσ(y)) = 2f(x) + 2f(y)(1.1)

for all x, y ∈ S, where S is a commutative semigroup and σ : S → S is an
endomorphism of S such that σ(σ(x)) = x for all x ∈ S. In [4], a variant
of the quadratic functional equation, namely

f(xy) + f(σ(y)x) = 2f(x) + 2f(y)(1.2)

for all x, y ∈ G, where G is a group (not necessarily abelian) was considered.
If G is an abelian group or f is a central function on group G, then the
equations (1.1) and (1.2) are equivalent. The following functional equation
is a variant of Drygas functional equation:

f(xy) + f(σ(y)x) = 2f(x) + f(y) + f(σ(y))(1.3)

for all x, y ∈ G. If f satisfies f(σ(y)) = f(y) for all y ∈ G, then (1.2) and
(1.3) are equivalent. This equation was studied by the author on groups in
[18]. The survey paper [7] and the references therein contain a wealth of
information on quadratic functional equation and Drygas functional equa-
tion. The inspiration for studying the functional equation (1.4) came from
the paper [23]. The functional equation

f(xy) + f(σ1(y)x) = 2f(x) + f(y) + f(σ2(y)), ∀x, y ∈ G(1.4)

with two involutive endomorphisms is a generalization of (1.3). The func-
tional equation (1.4) is a more general equation on an abelian group G than
(1.3) since choosing σ1 and σ2 appropriately in (1.4) one can obtain (1.2)
and (1.3).



Yet another variant of the Drygas functional equation on groups 15

This paper is organized as follows: In Section 2, we introduce the def-
inition of relevant terminologies and notations that will be used in the
subsequent sections of the paper. In Section 3, we prove some preliminary
results that will be used to determine the solution of the equation (1.4) on
groups. Section 4 contains the solution of (1.4) on groups when f is a cen-
tral function. In Section 5, we generalize the functional equation (1.4) and
determine its central solutions. As an application, using the solutions of a
generalization of (1.4), we determine the central solutions of a functional
equation (6.3) related to stochastic distance measures.

2. Notation and terminology

Let G be a group and S be a monoid written multiplicatively. Thus S is a
semigroup with the identity element e. Let C be field of complex numbers.
A function f : S → C is said to be central if and only if f(xy) = f(yx)
for all x, y in S (see [22]). In particular, a function f : S × S → C is
said to be central if and only if f(xy, uv) = f(yx, vu) for all x, y, u, v ∈ S.
This says that f is central on the product monoid S × S. A function
A : S → C is said to be a homomorphism (or an additive function) if
A(xy) = A(x) + A(y) for all x, y ∈ S. It is known that A(e) = 0. In
particular, A : S × S → C is said to be a homomorphism if A(xy, uv) =
A(x, u) + A(y, v) for all x, y, u, v ∈ S. It is known that A(e, e) = 0. A
function B : S×S → C is said to be a bihomomorphism if and only if B is
a homomorphism in each variable, that is B(xy, z) = B(x, z)+B(y, z) and
B(x, yz) = B(x, y) + B(x, z) for all x, y, z ∈ S or equivalently B satisfies
B(xy, uv) = B(x, u)+B(x, v)+B(y, u)+B(y, v) for x, y, u, v ∈ S. The map
B : S × S → C is said to be symmetric if and only if B(x, u) = B(u, x) for
all x, u ∈ S. It can be easily seen that B(e, x) = B(x, e) = B(e, e) = 0 for
all x ∈ S and B(x−1, u) = −B(x, u) for x, u ∈ G. The map σ : S → S is an
endomorphism satisfying σ(σ(x)) = x for all x ∈ S. Such a function σ will
be called an involutive endomorphism of S. The set of all homomorphisms
from G to the additive group of the complex numbers C will be denoted
by Hom(G,C). Similarly, the set of all symmetric bihomomorphisms from
G×G to the additive group of the complex numbers C will be denoted by
SBihom(G×G,C).

A function f : S → C called σ-even if and only if f(σ(x)) = f(x) for
all x ∈ S. Similarly, a function f : S → C called σ-odd if and only if
f(σ(x)) = −f(x) for all x ∈ S. A function f : S → C is σ2 ◦ σ1-even if and
only if f(σ1(x)) = f(σ2(x)) for all x ∈ S.
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3. Some preliminary results

Let D(S,C) denote the set of all solutions f : S → C of the functional
equation

f(xy) + f(σ1(y)x) = 2 f(x) + f(y) + f(σ2(y))

for all x, y ∈ S and W (S,C) denote the set of all solutions f : S → C of
the functional equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)(3.1)

for all x, y, z ∈ S.

Lemma 3.1. Let S be a monoid and σ1, σ2 : S → S be endomorphisms
satisfying σi(σi(x)) = x for all x ∈ S and for i = 1, 2. If f ∈ D(S,C), then
f ∈W (S,C).

Proof. Let f ∈ D(S,C), that is, f be a solution of (1.4). Then, it is
easy to check that f(e) = 0. Replacing x by xy and y by z in (1.4) we get
that

f(xyz) + f(σ1(z)xy) = 2 f(xy) + f(z) + f(σ2(z))(3.2)

for all x, y, z ∈ S. Similarly, replacing x by σ1(z)x in (1.4) and using the
fact that σ2 is an endomorphism, the resulting equation yields

f(σ1(z)xy) + f(σ1(yz)x) = 2 f(σ1(z)x) + f(y) + f(σ2(y))(3.3)

for all x, y, z ∈ S. Replacing y by yz in (1.4) and rewriting we get that

f(σ1(yz)x) = 2 f(x) + f(yz) + f(σ2(yz))− f(xyz)(3.4)

for all x, y, z ∈ S. Next, replacing y by z in (1.4), we have

f(σ1(z)x) = 2 f(x) + f(z) + f(σ2(z))− f(xz)(3.5)

for all x, y, z ∈ S. Subtracting (3.3) from (3.2), we obtain

f(xyz)− f(σ1(yz)x)
= 2 f(xy) + f(z) + f(σ2(z))− 2 f(σ1(z)x)− f(y)− f(σ2(y)).

(3.6)

Using (3.4) and (3.5) in (3.6) and simplifying the resulting expression,
we see that
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f(σ2(yz)) + f(yz)− 2f(xyz) + 2f(xy) + 2f(xz)
= 2f(x) + f(y) + f(σ2(y)) + f(z) + f(σ2(z))

(3.7)

for all x, y, z ∈ S. Letting x = e in the previous equation and simplifying,
we have

f(yz)− f(σ2(yz)) = f(y)− f(σ2(y)) + f(z)− f(σ2(z))(3.8)

for all y, z ∈ S. Defining A : S → C by

A(x) := f(x)− f(σ2(x))(3.9)

for all x ∈ S, we obtain from (3.8) A(yz) = A(y) + A(z) for all y, z ∈ S.
That is A : S → C is an additive function. Therefore from (3.9), we see
that

f(σ2(x)) = f(x)−A(x)(3.10)

for all x ∈ S. Inserting (3.10) in (3.7) and simplifying we have the asserted
equation:

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)

for all x, y, z ∈ S. Hence f ∈W (S,C) and this completes the proof. 2

Remark 3.2. The equation (3.1) has been referred to as Whitehead func-
tional equation by Faiziev and Sahoo in [6]. In 1950, Whitehead [25] found
the solutions of (3.1) on abelian groups. In 2013, Ng and Zhao [15] gave
the solution of the equation (3.1) on free groups. If f is a central function,
then Whitehead equation takes the form

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y).

The above equation is often referred to as Fréchet’s functional equation.
In [11], Kannappan determined the solution of Fréchet’s equation on groups.

The next lemma follows from Kannappan’s work (see [11], [12], and
[13]).

Lemma 3.3. Let G be a group and f : G→ C satisfy Fréchet’s functional
equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y)
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for all x, y, z ∈ G. Then f is given by

f(x) = a(x) + b(x, x)

for all x ∈ G, where a ∈ Hom(G,C) and b ∈ SBihom(G×G,C).

4. The central solution of the equation (1.4)

In this section, we determine the central solutions of the functional equation
(1.4).

Theorem 4.1. Let G be a group and σ1, σ2 : G → G be endomorphisms
satisfying σi(σi(x)) = x for all x ∈ G and for i = 1, 2. Let f : G → C be
a central function satisfying the functional equation (1.4) for all x, y ∈ G.
Then

f(x) = A(x) +B(x, x),(4.1)

where A ∈ Hom(G,C) and B ∈ SBihom(G×G,C) satisfying

B(σ1(x), y) = −B(x, y),(4.2)

and

B(σ2(y), σ2(y)) = B(y, y) and A(σ1(y)) = A(σ2(y))(4.3)

for all x, y ∈ G. The converse is also true.

Proof. It is easy to check that any function of the form (4.1) where
A ∈ Hom(G,C) and B ∈ SBihom(G×G,C) satisfy (4.2) and (4.3) for all
x, y ∈ G is a solution of the equation (1.4). Next, we show that (4.1) is the
only solution of (1.4) satisfying (4.2) and (4.3).

Let f be a solution of (1.4) for all x, y ∈ G. Then letting x = e and
y = e in (1.4), we see that f(e) = 0. Further, letting x = e, we have

f(y) = f(σ2(σ1(y)))

for all y ∈ G. Thus f is σ2 ◦ σ1-even.

Since f ∈ D(G,C), then from Lemma 3.1 we have that f ∈ W (G,C),
that is f is a solution of the Whitehead functional equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)
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for all x, y, z ∈ G. Using the fact that f is central, the previous equation
can be written as the Fréchet’s functional equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y)(4.4)

for all x, y, z ∈ G. From Lemma 3.3 we have that

f(x) = A(x) +B(x, x)(4.5)

where A : G→ C is a homomorphism and B : G×G→ C is a symmetric
bihomomorphism. Using the form of f in (4.5) in the equation (1.4), we
obtain

A(xy) +A(σ1(y)x)− 2A(x)−A(y)−A(σ2(y))
+B(xy, xy) +B(σ1(y)x, σ1(y)x)
−2B(x, x)−B(y, y)−B(σ2(y), σ2(y)) = 0

for all x, y ∈ G. Using the properties of the homomorphism A and the
symmetric bihomomorphism B in the above equation and then simplifying
the resulting expression, we have

A(σ1(y)) + 2B(x, y) + 2B(x, σ1(y))
+B(σ1(y), σ1(y))−A(σ2(y))−B(σ2(y), σ2(y)) = 0

(4.6)

for all x, y ∈ G. Since f is σ2 ◦ σ1-even, therefore f(σ1(y)) = f(σ2(y)) and
using (4.1), we obtain

A(σ1(y)) +B(σ1(y), σ1(y)) = A(σ2(y)) +B(σ2(y), σ2(y))(4.7)

for all y ∈ G. Use of (4.7) in (4.6) yields

B(x, σ1(y)) = −B(x, y)(4.8)

for all x, y ∈ G. Hence, since B is symmetric, we have

B(σ1(x), σ1(y)) = −B(σ1(x), y) = −B(y, σ1(x)) = B(y, x) = B(x, y)

for all x, y ∈ G and thus

B(σ1(y), σ1(y)) = B(y, y)(4.9)

for all y ∈ G. Replacing y by yn for n ∈ N (the set of natural numbers) in
(4.7), we get

n [A(σ1(y))−A(σ2(y))] + n2 [B(σ1(y), σ1(y))−B(σ2(y), σ2(y))] = 0
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for all n ∈ N and y ∈ G. Hence, we have A(σ1(y)) = A(σ2(y)) and
B(σ2(y), σ2(y)) = B(σ1(y), σ1(y)) for all y ∈ G. Using (4.9), we obtain

B(σ2(y), σ2(y)) = B(y, y) and A(σ1(y)) = A(σ2(y))(4.10)

for all y ∈ G. The proof of the theorem is now complete. 2
The next corollary follows from the last theorem.

Corollary 4.2. Let G be a group and σ : G → G be an involutive en-
domorphism. Let the central function f : G → C satisfy the functional
equation

f(xy) + f(σ(y)x) = 2f(x) + f(y) + f(σ(y))(4.11)

for all x, y ∈ G. Then

f(x) = A(x) +B(x, x),(4.12)

where B ∈ SBihom(G × G,C) satisfying B(σ(x), y) = −B(x, y) for all
x, y ∈ G and A ∈ Hom(G,C). The converse is also true.

The next two corollaries also follow from the last theorem.

Corollary 4.3. Let G be a group and σ : G → G be an involutive en-
domorphism. Let the central function f : G → C satisfy the functional
equation

f(xy) + f(σ(y)x) = 2f(x) + 2f(y)(4.13)

for all x, y ∈ G. Then

f(x) = A(x) +B(x, x),(4.14)

where B ∈ SBihom(G × G,C) satisfying B(σ(x), y) = −B(x, y) for all
x, y ∈ G and A ∈ Hom(G,C) satisfying A(σ(x)) = A(x) for all x ∈ G.
The converse is also true.

Corollary 4.4. Let G be an abelian group. Let the function f : G → C
satisfy the functional equation

f(xy) + f(y−1x) = 2f(x) + 2f(y)(4.15)

for all x, y ∈ G. Then
f(x) = B(x, x),(4.16)

where B ∈ SBihom(G×G,C). The converse is also true.
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The following corollary follows from Corollary 4.2.

Corollary 4.5. Let G be an abelian group and σ : G→ G be an involutive
endomorphism. Let the function f : G→ C satisfy the functional equation

f(xy) + f(xy−1) = 2f(x) + f(y) + f(y−1)(4.17)

for all x, y ∈ G. Then

f(x) = A(x) +B(x, x),(4.18)

where B ∈ SBihom(G×G,C) and A ∈ Hom(G,C). The converse is also
true.

5. A generalization of (1.4)

In the following theorem we present the solutions of a generalization of the
functional equation (1.4) whose solutions were determined in Theorem 4.1.

Theorem 5.1. Let G be a group and σ1, σ2 : G → G be two endomor-
phisms satisfying σi(σi(x)) = x for all x ∈ G and for i = 1, 2. Assume
f : G → C is a central function. The functions f, g, h, k : G → C satisfy
the functional equation

f(xy) + g(σ1(y)x) = 2f(x) + h(y) + k(σ2(y))(5.1)

for all x, y ∈ G if and only if
f(x) = A(x) +B(x, x) + β,
g(x) = A(x) +B(x, x) + β + α,
h(x) = φ(x),
k(x) = A(σ2(x)) +A(σ1(σ2(x))) + 2B(σ2(x), σ2(x)) + α− φ(σ2(x)),

where φ : G → C is a function, B ∈ SBihom(G × G,C) satisfying
B(σ1(x), y) = −B(x, y) for all x, y ∈ G, A ∈ Hom(G,C), and α, β are
complex constants.

Proof. Letting y = e in (5.1), we obtain

g(x) = f(x) + α(5.2)

where α := h(e) + k(e) is a complex constant. Next, letting x = e in (5.1),
we have

h(y) + k(σ2(y)) = f(y) + g(σ1(y))− 2β,
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where β := f(e). Using (5.2) in the above expression, we get

h(y) + k(σ2(y)) = f(y) + f(σ1(y)) + α− 2β.(5.3)

Next, we substitute (5.2) and (5.3) into (5.1) to get

f(xy) + f(σ1(y)x) = 2f(x) + f(y) + f(σ1(y))− 2β(5.4)

for all x, y ∈ G. Defining a function F : G→ C by

F (x) = f(x)− β(5.5)

for all x ∈ G. Then by (5.4), (5.5) reduces to

F (xy) + F (σ1(y)x) = 2F (x) + F (y) + F (σ1(y))(5.6)

for all x, y ∈ G. Hence from Corollary 4.2, we obtain the solution of the
above functional equation as

F (x) = A(x) +B(x, x)(5.7)

where B ∈ SBihom(G×G,C) satisfying

B(σ1(x), y) = −B(x, y)(5.8)

for all x, y ∈ G and A ∈ Hom(G,C). Using (5.7) in (5.5), we have

f(x) = A(x) +B(x, x) + β(5.9)

and (5.9) in (5.2) yields

g(x) = A(x) +B(x, x) + β + α.(5.10)

From (5.3) and (5.9), we get h(x) = φ(σ2(x)) and

k(x) = A(σ2(x)) +A(σ1(σ2(x))) + 2B(σ2(x), σ2(x)) + α− φ(σ2(x)).

It is easy to check that the solutions (f, g, h, k) along with the condition
(5.8) satisfy the functional equation (5.1). This finishes the proof of the
theorem. 2

The following two corollaries follow from the above theorem.
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Corollary 5.2. Let G be a group and σ : G → G be an endomorphism
satisfying σ(σ(x)) = x for all x ∈ G. Assume f : G → C is a central
function. The functions f, g : G→ C satisfy the functional equation

f(xy) + g(σ(y)x) = 2f(x)

for all x, y ∈ G if and only if

f(x) = g(x) = A(x) + β,

where A ∈ Hom(G,C) satisfying

A(x) +A(σ(x)) = 0 ∀x ∈ G.

Corollary 5.3. Let G be a group and σ : G → G be an endomorphism
satisfying σ(σ(x)) = x for all x ∈ G. Assume f : G → C is a central
function. The functions f, g, h : G→ C satisfy the functional equation

f(xy) + g(σ(y)x) = 2f(x) + h(y)

for all x, y ∈ G if and only if
f(x) = A(x) +B(x, x) + β,
g(x) = A(x) +B(x, x) + β + α,
h(x) = A(x) +A(σ(x)) + 2B(x, x) + α,

where A ∈ Hom(G,C) and B ∈ SBihom(G×G,C) satisfying

B(σ(x), y) = −B(x, y)

for all x, y ∈ G and α, β are any complex constants.

6. An application of (5.1)

In the next theorem, as an application of Theorem 4.1, we determine the
solution of a new functional equation (6.3) related to stochastic distance
measures when f is a central function. For other functional equations
related to stochastic distance measures the interested reader should refer
to [3, 16, 17, 19, 20].

The following lemma is needed from [5] for the next theorem.

Lemma 6.1. Let S be a monoid and σ : S × S → S × S the involutive
endomorphism given σ(p, q) := (q, p) for all (p, q) ∈ S×S. Every symmetric
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bihomorphism B : (S × S) × (S × S) → C satisfying B(σ(p, q), (r, s)) =
−B((p, q), (r, s)) for all (p, q), (r, s) ∈ S × S can be decomposed as

B((p, q), (p, q)) = ψ(p, p)− ψ(p, q)− ψ(q, p) + ψ(q, q)(6.1)

for all p, q, r, s ∈ S, where ψ ∈ SBihom(S × S,C). In addition, if S is a
group, then

B((p, q), (p, q)) = ψ(pq−1, pq−1)(6.2)

for all p, q, r, s ∈ S.

Next, we present the main result of this section.

Theorem 6.2. Let G be a group and f : G×G→ C be a central function.
The functions f, g, h, k : G×G→ C satisfy the functional equation

f(pr, qs) + g(sp, rq) = 2 f(p, q) + h(r, s) + k(s, r)(6.3)

for all p, q, r, s in G if and only if f, g, h, k are functions of the form

f(p, q) = θ1(p) + θ2(q) + ψ(pq−1, pq−1) + β,(6.4)

g(p, q) = θ1(p) + θ2(q) + ψ(pq−1, pq−1) + β + α,(6.5)

h(p, q) = φ(p, q),(6.6)

k(p, q) = θ1(pq) + θ2(pq) + 2ψ(pq
−1, pq−1)− φ(q, p) + α,(6.7)

where θ1, θ2 ∈ Hom(G,C), ψ ∈ SBihom(G×G,C), φ : G×G→ C is any
function, and α, β ∈ C are constants.

Proof. It easy but tedious to check that the functions (f, g, h, k) given by
(6.4), (6.5), (6.6), (6.7) satisfy the functional equation (6.3). Next, we show
that the functions (f, g, h, k) given by (6.4), (6.5), (6.6), (6.7) constitute the
only solution of (6.3).

Let (f, g, h, k) be a solution of the functional equation (6.3). Define a
function σ : G×G→ G×G such that σ(p, q) = (q, p) for all p, q ∈ G. Then
σ is an endomorphism and it is also involutive, that is

σ(σ(p, q)) = σ(q, p) = (p, q)

for all p, q ∈ G. Let x = (p, q) and y = (r, s) in (6.3). Then it reduces
to (1.4) for all x, y ∈ G × G. Since f is central, from Theorem 5.1 with
σ1 = σ2 = σ, we obtain
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f(x) = A(x) +B(x, x) + β,
g(x) = A(x) +B(x, x) + β + α,
h(x) = φ(x),
k(x) = A(σ(x)) +A(x) + 2B(σ(x), σ(x))− φ(σ(x)) + α,

where B ∈ SBihom((G×G)×(G×G),C) satisfying B(σ(x), y) = −B(x, y)
for all x, y ∈ G×G, A ∈ Hom(G×G,C), φ : G×G→ C is any function,
and α, β are complex constants. Since x ∈ G×G, we can write x = (p, q)
for p, q ∈ G. Hence we have

f(p, q) = A(p, q) +B((p, q), (p, q)) + β,
g(p, q) = f(p, q) + α,
h(p, q) = φ(p, q),
k(p, q) = A(q, p) +A(p, q) + 2B((q, p), (q, p))− φ(q, p) + α

for all p, q ∈ G. Using Lemma 5.2 from [4], the functions A can be decom-
posed as A(p, q) = θ1(p)+θ2(q), where θ1, θ2 ∈ Hom(G,C). Using Lemma
6.1, the bihommorphism B can be further simplified as

B((p, q), (p, q)) = ψ(pq−1, pq−1).

Inserting the form of A(p, q) and B((p, q), (p, q)) for (f, g, h, k) we have
the asserted solutions (6.4)-(6.7). The proof of the theorem is now complete.
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