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Abstract

We consider flows, called W u flows, whose orbits are the unstable
manifolds of a codimension one Anosov flow. Under some regular-
ity assumptions, we give a short proof of the strong mixing property
of W u flows and we show that Wu flows have purely absolutely con-
tinuous spectrum in the orthocomplement of the constant functions.
As an application, we obtain that time changes of the classical horo-
cycle flows for compact surfaces of constant negative curvature have
purely absolutely continuous spectrum in the orthocomplement of the
constant functions for time changes in a regularity class slightly less
than C2. This generalises recent results on time changes of horocycle
flows.
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1. Introduction

Horocycle flows for compact surfaces of constant negative curvature, and
their generalisations, are a classical object of study in dynamical systems.
Since the papers of G. A. Hedlund [8, 9] and E. Hopf [10] in the 1930’s,
many properties of these flows have been put into evidence (far too many
to be listed here). As for spectral properties, in particular the structure of
the essential spectrum, not that many results are available.

In 1953, O. S. Parasyuk [19] has shown that the classical horocycle
flows for compact surfaces of constant negative curvature have countable
Lebesgue spectrum. In 1974, A. G. Kushnirenko [13] has shown that some
small time changes of the classical horocycle flows for compact surfaces
of constant negative curvature are mixing, and thus have purely continu-
ous spectrum in the orthocomplement of the constant functions. In 1977,
B. Marcus [15] has shown that a large class of minimal W u flows asso-
ciated with codimension one Anosov flows (in particular, a large class of
reparametrisations of the classical horocycle flows for compact surfaces of
negative curvature) are mixing. Finally, more recently, G. Forni and C. Ul-
cigrai [6], and the author [23, 25] have shown that sufficiently smooth time
changes of the classical horocycle flows for compact surfaces of constant
negative curvature have purely absolutely continuous spectrum in the or-
thocomplement of the constant functions (in [6] Lebesgue spectrum is also
obtained, and in [23] surfaces of finite volume are also considered).

The purpose of this paper is to extend these last results on the abso-
lutely continuous spectrum of time changes of horocycle flows to a very
general class of time changes, namely, time changes in a regularity class
slightly less than C2. Our approach is the following. We consider as B.
Marcus a continuous minimal W u flow, that is, a continuous minimal flow
whose orbits are the unstable manifolds of a C1+ε codimension one Anosov
flow on a compact connected Riemannian manifold (minimality is required
for the W u flow to be uniquely ergodic). Under some regularity assump-
tions on the W u flow and the Anosov flow, we give a short proof of the
strong mixing property of the W u flow. Then, under some additional reg-
ularity assumption, we construct a self-adjoint operator, called conjugate
operator, satisfying a suitable positive commutator estimate with the self-
adjoint generator of the W u flow (a Mourre estimate). Finally, we deduce
from this positive commutator estimate and commutator methods that the
generator of the W u flow has purely absolutely continuous spectrum in the
orthocomplement of the constant functions. As an application, we obtain
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that time changes of the classical horocycle flows for compact surfaces of
constant negative curvature have purely absolutely continuous spectrum
in the orthocomplement of the constant functions for time changes in a
regularity class slightly less than C2.

Here is a description of the content of the paper. In Section 2, we recall
some definitions and results on codimension one Anosov flows and mini-
mal W u flows, we introduce our regularity assumptions (Assumptions 2.1
and 2.4), and we give a proof of the strong mixing property of the W u

flow (Theorem 2.6). In Section 3, we recall the needed facts on commuta-
tors of operators and regularity classes associated with them. Then, under
some additional regularity assumption (Assumption 3.4), we construct the
conjugate operator (Proposition 3.5), we prove the positive commutator
estimate (Proposition 3.7), and we show that the generator of the W u flow
has purely absolutely continuous spectrum in the orthocomplement of the
constant functions (Theorem 3.8). Finally, we present the application of
this result to time changes of the classical horocycle flows for compact sur-
faces of constant negative curvature (Remark 3.9).

Acknowledgements. The author thanks D. Krejčǐŕık for interesting dis-
cussions and for his warm hospitality at the Department of Theoretical
Physics of the Nuclear Physics Institute in Řež in January 2015. The au-
thor also thanks the referees for various useful remarks.

2. Strong mixing

In this section, we recall some definitions and results on codimension one
Anosov flows and minimal W u flows, and we present a short proof of the
strong mixing property of a class of minimal W u flows. We follow fairly
closely the presentation and notations of B. Marcus [15], but we refer to
the review papers [2, 17, 20] for additional information.

A C1+ε Anosov flow on a compact connected Riemannian manifold M
with distance d : M ×M → [0,∞) is a C1+ε flow {ft}t∈R with ε > 0,
without fixed points, satisfying the following property: through each point
x ∈M pass three submanifolds W u(x), W s(x), and Orb(x) whose tangent
spaces Eux , E

s
x, and Ex (respectively) vary continuously with x ∈ M and

satisfy

TxM = Eux ⊕Esx ⊕Ex.

The regularity assumption on {ft}t∈R means that the function R ×M 3
(t, x) 7→ ft(x) ∈ M is of class C1+ε. So, {ft}t∈R has a vector field Xf
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which is Hölder continuous with exponent ε. The submanifolds W u(x),
W s(x), and Orb(x) are called unstable manifolds, stable manifolds, and
orbits (respectively), and are characterised by

W u(x) =

½
y ∈M | limt→−∞ d

³
ft(x), ft(y)

´
= 0

¾
,

W s(x) =

½
y ∈M | limt→+∞ d

³
ft(x), ft(y)

´
= 0

¾
,

Orb(x) =
n
ft(x) | t ∈ R

o
.

The following two facts are well-known [2]:

(i) The families {W u(x)}x∈M and {W s(x)}x∈M each form a continuous
foliation of M (that is, if y ∈ W u(x) then W u(y) = W u(x), and
W u(x) varies locally continuously with x ∈M).

(ii) ft
³
W u(x)

´
= W u

³
ft(x)

´
and ft

³
W s(x)

´
= W s

³
ft(x)

´
for all t ∈ R

and x ∈M .

In this paper, we consider a codimension one Anosov flow {ft}t∈R such
that {W u(x)}x∈M is a one-dimensional orientable continuous foliation of
M which defines a continuous minimal flow {φs}s∈R whose orbits are the
unstable manifolds. Such a flow {φs}s∈R is called a minimal W u flow or
a minimal W u parametrisation, and it is uniquely ergodic with respect to
a Borel probability mesure µ on M [5, 14]. However, the unique invariant
measure µ is in general not absolutely continuous with respect to the volume
element [15, Sec. 6] [16].

Since ft
³
W u(x)

´
=W u

³
ft(x)

´
for all t ∈ R and x ∈M , there exists a

function s∗ : R×R×M → R such that³
ft ◦ φs

´
(x) =

³
φs∗(t,s,x) ◦ ft

´
(x) for all s, t ∈ R and x ∈M .(2.1)

This commutation relation, which describes how the Anosov flow {ft}t∈R
expands W u orbits, is the starting point of our analysis. It generalises the
well-known commutation relation [4, Rem. IV.1.2] between the geodesic
flow and the classical horocycle flow on the unit tangent bundle of compact
orientable surfaces of constant negative curvature. We recall three facts in
relation with (2.1):

(iii) The family {W u(x)}x∈M admits a uniformly expanding parametrisa-
tion, that is, a continuous parametrisation {eφs}s∈R such that ft◦ eφs =eφλts ◦ ft for some constant λ > 1 and all s, t ∈ R [14, Rem. 1.8 &
Prop. 2.1] (the constant λ is equal to eh(f1), with h(f1) the topological
entropy of f1).
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(iv) Since {eφs}s∈R is a continuous reparametrisation of {φs}s∈R, and
since {φs}s∈R is uniquely ergodic with respect to the measure µ, the
flow {eφs}s∈R is uniquely ergodic with respect to a measure eµ given
in terms of µ (however, the measure eµ is in general not absolutely
continuous with respect to the measure µ [3, § 3 & 4]).

(v) The measure eµ is invariant under the Anosov flow {ft}t∈R [15, Rem. 6.4].
In order to be able to define a self-adjoint generator for the flow {φs}s∈R

and to have a simple relation between the measures µ and eµ, we assume
the following regularity condition:

Assumption 2.1. The flow {φs}s∈R is of class C1, and {eφs}s∈R is a C1

reparametristation of {φs}s∈R.

Under Assumption 2.1, the flow {φs}s∈R has a continuous vector field
Xφ, and there exists a function τ ∈ C1(M × R;R) such that φs(x) =eφτ(x,s)(x), τ(x, 0) = 0, τ(x, · ) is strictly increasing and τ(x, s + t) =

τ(x, s)+ τ
³
φs(x), t

´
for all s, t ∈ R and x ∈M [3, § 1] (the function τ(x, ·)

can be chosen strictly increasing for all x ∈ M because M is connected).

These properties imply in particular that
³
∂2τ

´
(x, 0) > 0 for all x ∈ M .

Therefore, the function

ρ :M → R, x 7→ 1

(∂2τ)(x, 0)
,

is well-defined and belongs to C
³
M ; (0,∞)

´
, the flow {eφs}s∈R has contin-

uous vector field ρXφ, and the measure eµ satisfies [11, Prop. 3]:
eµ = µ/eρ with eρ := ρ

Z
M
dµ ρ−1.(2.2)

Also, one verifies that the pullback operators in H := L2(M,µ) associated
with the flow {φs}s∈R,

Uφ
s ϕ := ϕ ◦ φs, s ∈ R, ϕ ∈ H,

define a strongly continuous 1-parameter group of unitary operators with
Uφ
s C

1(M) ⊂ C1(M) for all s ∈ R. Thus, Nelson’s criterion [21, Thm. VIII.10]
implies that the generator of the group {Uφ

s }s∈R,

Hφϕ := s− lim
s→0

is−1
³
Uφ
s − 1

´
ϕ,
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ϕ ∈ D(Hφ) :=

½
ϕ ∈ H | lim

s→0
|s|−1

°°°³Uφ
s − 1

´
ϕ
°°° <∞¾ ,

is essentially self-adjoint on C1(M) and given by

Hφϕ = iXφϕ, ϕ ∈ C1(M).

On another hand, the pullback operators associated with the flow {ft}t∈R,

Uf
t ϕ := ϕ ◦ ft, t ∈ R, ϕ ∈ H,

are not unitary if ρ 6≡ 1, but they define a strongly continuous 1-parameter
group of bounded operators:

Lemma 2.2. Suppose that Assumption 2.1 is satisfied. Then, Uf
t ∈ B(H)

for all t ∈ R, Uf
s U

f
t = Uf

s+t for all s, t ∈ R, U
f
0 = 1, and limε→0

°°°³Uf
t+ε −

Uf
t

´
ϕ
°°° = 0 for all t ∈ R and ϕ ∈ H.

Proof. A direct calculation using (2.2) and the fact that eµ is invariant
under {ft}t∈R implies for t ∈ R and ϕ ∈ H that°°°Uf

t ϕ
°°°2 = Z

M
deµ eρ ¯̄̄ϕ ◦ ft ¯̄̄2 = Z

M
deµ³eρ ◦ f−t´|ϕ|2

=

Z
M
dµ

ρ ◦ f−t
ρ

|ϕ|2 ≤ max(ρ)
min(ρ)

kϕk2.

Thus, Uf
t ∈ B(H) with °°°Uf

t

°°° ≤smax(ρ)
min(ρ)

.(2.3)

The group properties Uf
s U

f
t = Uf

s+t for s, t ∈ R and Uf
0 = 1 are evident.

To show the last property, take t ∈ R and ϕ ∈ C(M). Then, the continuity

of
³
ϕ ◦ ft+ε −ϕ ◦ ft

´
and Lebesgue dominated convergence theorem imply

that

lim
ε→0

°°°³Uf
t+ε − Uf

t

´
ϕ
°°°2 = Z

M
dµ lim

ε→0

¯̄̄
ϕ ◦ ft+ε − ϕ ◦ ft

¯̄̄2
= 0.

Since C(M) is dense in H and
³
Uf
t+ε − Uf

t

´
∈ B(H), this implies that

limε→0
°°°³Uf

t+ε − Uf
t

´
ϕ
°°° = 0 for all t ∈ R and ϕ ∈ H. 2

For the next lemma, we need the following result of B. Marcus:
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Lemma 2.3 (Lemma 3.1 of [15]). Let {φs}s∈R be a minimal W u flow
on M . Then,

lim
s→∞

s−1s∗(t, s, x) = λt

uniformly in x ∈M and t in a given compact interval of R.

We also need to introduce as B. Marcus in [15, Sec. 4] the following
regularity condition on the function s∗:

Assumption 2.4. The derivative

ut,s(x) :=
³
∂1∂2s

∗
´
(t, s, x)

exists and is continuous in s, t ∈ R and x ∈M .

Lemma 2.5. Suppose that Assumption 2.4 is satisfied. Then,

lim
s→∞

s−1
³
∂1s

∗
´
(t, s, x) =

Z
M
dµut,0 = ln(λ)λ

t(2.4)

uniformly in x ∈M and t in a given compact interval of R.

Proof. Let I ⊂ R be a compact interval, and take r, s ∈ R, t ∈ I and

x ∈M . Using successively the relation
³
∂1s

∗
´
(t, 0, x) = 0, Assumption 2.4

and the cocycle equation

s∗(t, r + s, x) = s∗(t, r, x) + s∗
³
t, s, φr(x)

´
,(2.5)

we obtain³
∂1s

∗
´
(t, s, x) =

Z s

0
dr

d

dr

³
∂1s

∗
´
(t, r, x) =

Z s

0
dr

d

dt

d

ds

¯̄̄̄
s=0

s∗(t, r + s, x)

=

Z s

0
dr ut,0

³
φr(x)

´
.

Therefore, it follows by the unique ergodicity of {φs}s∈R that

lim
s→∞

s−1
³
∂1s

∗
´
(t, s, x) = lim

s→∞
s−1

Z s

0
dr ut,0

³
φr(x)

´
=

Z
M
dµut,0(2.6)

uniformly in x ∈M and t ∈ I (the uniformity in t follows from the continu-
ity of ut,0 in t). To show the second equality in (2.4), we note from Lemma
2.3 that
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lim
s→∞

s−1s∗(t, s, x) = λt

uniformly in x ∈M and t ∈ I. We also note from (2.6) that s−1
³
∂1s

∗
´
(t, s, x)

converges to some function of t uniformly in x ∈M and t ∈ I. So, it follows
by a uniform convergence argument that

lim
s→∞

s−1
³
∂1s

∗
´
(t, s, x) =

d

dt
lim
s→∞

s−1s∗(t, s, x) =
d

dt
λt = ln(λ)λt

uniformly in x ∈M and t ∈ I. 2

In the following theorem, we give a short proof, inspired by [24, Thm. 4.1],
of the strong mixing property of the flow {φs}s∈R. It can be viewed as a
simplified version of the proof of B. Marcus [15, Sec. 4] in the case Assump-
tion 2.1 is satisfied (the proof of B. Marcus works without Assumption 2.1).

Theorem 2.6 (Strong mixing). Suppose that Assumptions 2.1 and 2.4

are satisfied. Then, lims→∞
D
ψ,Uφ

s ϕ
E
= 0 for all ψ ∈ H and ϕ ∈ ker(Hφ)

⊥.

In particular, the flow {φs}s∈R is strongly mixing with respect to the mea-
sure µ.

Proof. Take ϕ ∈ C1(M), s, t ∈ R and x ∈ M . Then, we know from
(2.1) that ³

ϕ ◦ ft ◦ φs
´
(x) =

³
ϕ ◦ φs∗(t,s,x) ◦ ft

´
(x).

Applying the derivative d
dt

¯̄̄
t=0

and using the relation s∗(0, s, x) = s, we

obtain³
Xfϕ

´³
φs(x)

´
= d

dt

¯̄̄̄
t=0

³
ϕ ◦ φs∗(t,s,x) ◦ ft

´
(x)

= limε→0 ε−1
n³

ϕ ◦ φs∗(ε,s,x) ◦ fε
´
(x)−

³
ϕ ◦ φs∗(0,s,x) ◦ fε

´
(x)
o

+ limε→0 ε−1
n³

ϕ ◦ φs ◦ fε
´
(x)−

³
ϕ ◦ φs ◦ f0

´
(x)
o

=
³
∂1s

∗
´
(0, s, x) ·

³
Xφϕ

´³
φs(x)

´
+
³
Xf (ϕ ◦ φs)

´
(x),

which is equivalent to³
∂1s

∗
´
(0, s, · )Uφ

s Hφϕ = iUφ
s Xfϕ− iXfU

φ
s ϕ.(2.7)

So, for ψ ∈ C1(M), we infer from Lemma 2.5 that
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lims→∞
D
ρ−1ψ,Uφ

s Hφϕ
E

= ln(λ)−1 lims→∞
D
ρ−1ψ, ln(λ)Uφ

s Hφϕ
E

= ln(λ)−1 lims→∞
D
ρ−1ψ, s−1

³
∂1s

∗
´
(0, s, · )Uφ

s Hφϕ
E

= ln(λ)−1 lims→∞ s−1
D
ρ−1ψ, iUφ

s Xfϕ
E
− ln(λ)−1 lims→∞ s−1

D
ρ−1ψ, iXfU

φ
s ϕ
E

= 0− ln(λ)−1 lims→∞ s−1
D
ψ, iρ−1XfU

φ
s ϕ
E
.

But, the operator iρ−1Xf is symmetric on C1(M). So,

lim
s→∞

s−1
D
ψ, iρ−1XfU

φ
s ϕ
E
= lim

s→∞
s−1

D
iρ−1Xfψ,U

φ
s ϕ
E
= 0,

and thus

lim
s→∞

D
ρ−1ψ,Uφ

s Hφϕ
E
= 0.(2.8)

Moreover, the set ρ−1C1(M) is dense in H because C1(M) is dense in
H and ρ−1 : H → H is an homeomorphism, and the set HφC

1(M) is
dense in ker(Hφ)

⊥ because C1(M) is a core for Hφ and HφD(Hφ) is dense

in ker(Hφ)
⊥. Therefore, (2.8) implies that lims→∞

D
ψ,Uφ

s ϕ
E
= 0 for all

ψ ∈ H and ϕ ∈ ker(Hφ)
⊥. 2

Under Assumptions 2.1 and 2.4, the result of Theorem 2.6 applies in
particular to the case of reparametrisations of classical horocycle flows on
the unit tangent bundle of compact connected orientable surfaces of con-
stant negative curvature (see [15, Cor. 4.2]).

3. Absolutely continuous spectrum

We know from Theorem 2.6 that, under Assumptions 2.1 and 2.4, the flow
{φs}s∈R is strongly mixing with respect to the measure µ. Therefore, its
generator Hφ has purely continuous spectrum in R \ {0}. Our goal in
this section is to show that the spectrum of Hφ is even purely absolutely
continuous in R \ {0} under some additional regularity assumption. For
this, we first need to recall some results on commutator methods borrowed
from [1, 22] (see also the original paper [18] of É. Mourre).
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3.1. Commutators and regularity classes

Let H be a Hilbert space with scalar product h · , · i antilinear in the first
argument, denote by B(H) the set of bounded linear operators on H, and
write k · k both for the norm on H and the norm on B(H). Let A be a
self-adjoint operator in H with domain D(A), and take S ∈ B(H). For any
k ∈ N, we say that S belongs to Ck(A), with notation S ∈ Ck(A), if the
map

R 3 t 7→ e−itA S eitA ∈ B(H)(3.1)

is strongly of class Ck. In the case k = 1, one has S ∈ C1(A) if and only if
the quadratic form

D(A) 3 ϕ 7→
D
ϕ,SAϕ

E
−
D
Aϕ,Sϕ

E
∈ C

is continuous for the topology induced by H on D(A). We denote by [S,A]
the bounded operator associated with the continuous extension of this form,
or equivalently −i times the strong derivative of the function (3.1) at t = 0.

If H is a self-adjoint operator in H with domain D(H) and spectrum
σ(H), we say that H is of class Ck(A) if (H − z)−1 ∈ Ck(A) for some
z ∈ C \ σ(H). So, H is of class C1(A) if and only if the quadratic form

D(A) 3 ϕ 7→
D
ϕ, (H − z)−1Aϕ

E
−
D
Aϕ, (H − z)−1ϕ

E
∈ C

extends continuously to a bounded form defined by the operator [(H −
z)−1, A] ∈ B(H). In such a case, the set D(H) ∩D(A) is a core for H and
the quadratic form

D(H) ∩D(A) 3 ϕ 7→
D
Hϕ,Aϕ

E
−
D
Aϕ,Hϕ

E
∈ C

is continuous in the topology of D(H) [1, Thm. 6.2.10(b)]. This form then
extends uniquely to a continuous quadratic form on D(H) which can be
identified with a continuous operator [H,A] from D(H) to the adjoint space
D(H)∗. In addition, the following relation holds in B(H):h

(H − z)−1, A
i
= −(H − z)−1[H,A](H − z)−1.(3.2)

Let EH( ·) denote the spectral measure of the self-adjoint operator H,
and assume that H is of class C1(A). If there exist a Borel set I ⊂ R, a
number a > 0 and a compact operator K ∈ B(H) such that

EH(I)[iH,A]EH(I) ≥ aEH(I) +K,(3.3)
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then one says that H satisfies a Mourre estimate on I and that A is a
conjugate operator for H on I. Also, one says that H satisfies a strict
Mourre estimate on I if (3.3) holds with K = 0. One of the consequences
of a Mourre estimate is to imply spectral results for H on I. We recall
here these spectral results in the case where H is of class C2(A) (see [1,
Sec. 7.1.2] and [22, Thm. 0.1] for more details).

Theorem 3.1. Let H and A be self-ajoint operators in a Hilbert space H,
with H of class C2(A). Suppose there exist a bounded Borel set I ⊂ R, a
number a > 0 and a compact operator K ∈ B(H) such that

EH(I)[iH,A]EH(I) ≥ aEH(I) +K.(3.4)

Then, H has at most finitely many eigenvalues in I, each one of finite
multiplicity, andH has no singular continuous spectrum in I. Furthermore,
if (3.4) holds with K = 0, then H has only purely absolutely continuous
spectrum in I (no singular spectrum).

3.2. Absolutely continuous spectrum

We show in this section that the spectrum of Hφ is purely absolutely con-
tinuous in R \ {0} under some additional regularity assumption. We start
with two technical lemmas.

Lemma 3.2. Suppose that Assumptions 2.1 and 2.4 are satisfied.

(a) If s ∈ R and ϕ ∈ C1(M), then Uφ
s XfU

φ
−sϕ = Xfϕ +

R s
0 dr

³
u0,0 ◦

φr
´
Xφϕ.

(b) If z ∈ C \R and ϕ ∈ C1(M), then Xf

³
Hφ − z

´−1
ϕ ∈ H.

(c) If Xf (ρ) ∈ C(M), then u0,0 = ln(λ) + ρ−1Xf (ρ).

Proof.
(a) Take s ∈ R and ϕ ∈ C1(M). Then, (2.7), the identity

³
∂1s

∗
´
(0, 0, · ) ≡

0 and Assumption 2.4 imply

Uφ
s XfU

φ
−sϕ = Xfϕ+

³
∂1s

∗
´
(0, s, · )Xφϕ = Xfϕ+

Z s

0
dr u0,rXφϕ.

(3.5)
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On another hand, the cocycle equation (2.5) implies for all r, s, t ∈ R that

s∗(t, s, · ) = s∗
³
t, s− r, φr( ·)

´
− s∗

³
t,−r, φr( ·)

´
= Uφ

r

³
s∗(t, s− r, · )− s∗

³
t,−r, · )

´
Uφ
−r.

Deriving with respect to t and s, we thus obtain

ut,s = Uφ
r ut,s−rU

φ
−r = ut,s−r ◦ φr.

In particular, we have u0,r = u0,0 ◦ φr, and the claim follows from (3.5).

(b) We give the proof in the case Im(z) > 0 since the case Im(z) <

0 is analogous. Take ϕ ∈ C1(M). Then, the formula
³
Hφ − z

´−1
ϕ =

i
R∞
0 dr eirz Uφ

r ϕ and point (a) imply

Xf

³
Hφ − z

´−1
ϕ

= i limt→0
R∞
0 dr eirz t−1

³
Uf
t − 1

´
Uφ
r ϕ

= i limt→0
R∞
0 dr eirz t−1

R t
0 dsU

f
s XfU

φ
r ϕ

= i limt→0
R∞
0 dr eirz t−1

R t
0 dsU

f
s U

φ
r

³
Xf +

R−r
0 dq

³
u0,0 ◦ φq

´
Xφ

´
ϕ.

(3.6)

Now, we know from (2.3) that
°°°Uf

s

°°° ≤ r
max(ρ)
min(ρ) for all s ∈ R. Thus, we

have °°°eirz t−1 R t0 dsUf
s U

φ
r

³
Xf +

R−r
0 dq

³
u0,0 ◦ φq

´
Xφ

´
ϕ
°°°

≤ e−r Im(z)
r
max(ρ)
min(ρ)

³°°°Xfϕ
°°°+ rku0,0kL∞(X,µ)

°°°Xφϕ
°°°´

∈ L1
³
[0,∞), dr

´
,

and we can apply Lebesgue dominated convergence theorem to (3.6) to
obtain

Xf

³
Hφ − z

´−1
ϕ

= i
R∞
0 dr eirz limt→0 t−1

R t
0 dsU

f
s U

φ
r

³
Xf +

R−r
0 dq

³
u0,0 ◦ φq

´
Xφ

´
ϕ

= i
R∞
0 dr eirz Uφ

r

³
Xf +

R−r
0 dq

³
u0,0 ◦ φq

´
Xφ

´
ϕ

∈ H.

(c) The proof is inspired by a result of L. W. Green in the case of the
classical horocycle flows on the unit tangent bundle of compact connected
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orientable surfaces of negative curvature (see [7, Eq. (3.3) & Lemma 3.3]).
Take ψ,ϕ ∈ C1(M). Then, the facts that {eφs}s∈R has vector field ρXφ,

that {eφs}s∈R and {ft}t∈R preserve the measure eµ = µ/eρ and that ft◦ eφ−s =eφ−λts ◦ ft implyD
Xφψ,Xfϕ

E
= d

dt

¯̄̄̄
t=0

d
ds

¯̄̄̄
s=0

D
ρ−1

³
ψ ◦ eφs´, ϕ ◦ ftE

= d
dt

¯̄̄̄
t=0

d
ds

¯̄̄̄
s=0

D
ρ−1ψ,ϕ ◦ ft ◦ eφ−sE

= d
dt

¯̄̄̄
t=0

d
ds

¯̄̄̄
s=0

D
ρ−1ψ,ϕ ◦ eφ−λts ◦ ftE

= − d
dt

¯̄̄̄
t=0

D
ρ−1ψ, λt

³
ρXφϕ

´
◦ ft

E
= − d

dt

¯̄̄̄
t=0

D
ψ ◦ f−t, λtXφϕ

E
=
D
Xfψ,Xφϕ

E
−
D
ψ, ln(λ)Xφϕ

E
.

On another hand, point (a) and the symmetricity of iρ−1Xf on C1(M)
imply D

ψ, u0,0Xφϕ
E

= d
ds

¯̄̄̄
s=0

D
ρUφ
−sψ, ρ

−1XfU
φ
−sϕ

E
= −

D
Xφψ,Xfϕ

E
+
D
ρ−1Xfρψ,Xφϕ

E
= −

D
Xφψ,Xfϕ

E
+
D
Xfψ,Xφϕ

E
+
D
ψ, ρ−1Xf (ρ)Xφϕ

E
.

Combining the two relations, we thus obtainD
ψ,
³
u0,0 − ln(λ)− ρ−1Xf (ρ)

´
Xφϕ

E
= 0,

and we infer from the density of C1(M) in H and the density of XφC
1(M)

in ker(Hφ)
⊥ that D

ψ,
³
u0,0 − ln(λ)− ρ−1Xf (ρ)

´
ϕ
E
= 0(3.7)

for all ψ ∈ H and ϕ ∈ ker(Hφ)
⊥. Now, Lemma 2.5, the fact that {ft}t∈R

preserves eµ = µ/eρ, and the ergodicity of {φs}s∈R imply that

u0,0 − ln(λ)− ρ−1Xf (ρ) ∈
½
ϕ ∈ H |

Z
M
dµϕ = 0

¾
= ker(Hφ)

⊥.

So, we can set ψ = 1 and ϕ = u0,0 − ln(λ)− ρ−1Xf (ρ) in (3.7) to getZ
M
dµ
³
u0,0 − ln(λ)− ρ−1Xf (ρ)

´2
= 0,
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and then infer that u0,0 − ln(λ) − ρ−1Xf (ρ) ≡ 0 by the continuity of u0,0
and ρ−1Xf (ρ). 2

Lemma 3.3. Let X be a C1 vector field onM and g ∈ C1(M ;R). Assume
that the operator

Aϕ := i(X + g)ϕ, ϕ ∈ C1(M),

is symmetric in H. Then, A is essentially self-adjoint in H.

Proof. SinceX is of class C1,X admits a C1 flow {ζs}s∈R [12, Thm. 3.43].
Thus, the operators

Vsϕ := e
R s
0
dr (g◦ζr) ϕ ◦ ζs, s ∈ R, ϕ ∈ C1(M),

are well-defined operators in H. Simple calculations show that VsVtϕ =
Vs+tϕ and V0ϕ = ϕ for s, t ∈ R and ϕ ∈ C1(M), that limε→0 k(Vs+ε −
Vs)ϕk = 0 for s ∈ R and ϕ ∈ C1(M), that VsC

1(M) ⊂ C1(M) for s ∈ R,
and that d

ds Vsϕ = −iAVsϕ for s ∈ R and ϕ ∈ C1(M). Furthermore, we
have for s ∈ R and ψ,ϕ ∈ C1(M) the equalities

D
Vsψ, Vsϕ

E
− hψ,ϕi =

Z s

0
dr

d

dr

D
Vrψ, Vrϕ

E

= i

Z s

0
dr
³D

AVrψ, Vrϕ
E
−
D
Vrψ,AVrϕ

E´
= 0,

due to the symmetricity of A. Therefore, the family {Vs}s∈R satisfies on
C1(M) the properties of a strongly continuous 1-parameter group of iso-
metric operators in H with VsC

1(M) ⊂ C1(M) for all s ∈ R, and with
generator equal to A on C1(M). Since C1(M) is dense in H, it follows that
{Vs}s∈R extends to a strongly continuous 1-parameter group of isometric
(and thus unitary) operators in H with VsC

1(M) ⊂ C1(M) for all s ∈ R,
and with generator equal to A on C1(M). Thus, Nelson’s criterion [21,
Thm. VIII.10] implies that A is essentially self-adjoint in H. 2

In the rest of the paper, in addition to Assumptions 2.1 and 2.4, we
assume the following:

Assumption 3.4. The vector fields Xf and Xφ are of class C
1, Xf (ρ) ∈

C(M) and ρ−1Xf (ρ) ∈ C1(M).
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The conditions Xf (ρ) ∈ C(M) and ρ−1Xf (ρ) ∈ C1(M) are equivalent

to the condition Xf

³
ln(ρ)

´
∈ C1(M). So, if one prefers, one can replace

the two conditions Xf (ρ) ∈ C(M) and ρ−1Xf (ρ) ∈ C1(M) in Assumption

3.4 by the single condition Xf

³
ln(ρ)

´
∈ C1(M).

In the next proposition we define and prove the self-adjointness of the
conjugate operator. Intuitively, the conjugate operator is constructed as
follows. First, we take the sum of the vector field 2iXf and its “divergence”
iρ−1Xf (ρ) to get a symmetric operator on C1(M). Then, we take the
Birkhoff average of the resulting operator along the flow {φs}s∈R to take
into account the unique ergodicity of {φs}s∈R.

Proposition 3.5 (Conjugate operator). Suppose that Assumptions 2.1,
2.4, and 3.4 are satisfied. Then, the operator

Atϕ :=
1

t

Z t

0
dsUφ

s

³
2iXf + iρ−1Xf (ρ)

´
Uφ
−sϕ, t > 0, ϕ ∈ C1(M),

is essentially self-adjoint in H (and its closure is denoted by the same sym-
bol).

Proof. Since ρ−1Xf (ρ) = eρ−1Xf (eρ), the operator ³2iXf + iρ−1Xf (ρ)
´

is symmetric on C1(M). Therefore, the operator At is also symmetric on
C1(M) because Uφ

s C
1(M) ⊂ C1(M) for all s ∈ R. To show that At is

essentially self-adjoint on C1(M), we take ψ,ϕ ∈ C1(M). Then, Lemma
3.2(a) implies that

D
ψ,Atϕ

E
=
D
ψ, 1t

R t
0 ds

³
2iXf + 2i

R s
0 dr

³
u0,0 ◦ φr

´
Xφ + i

³
ρ−1Xf (ρ)

´
◦ φs

´
ϕ
E

=
D
ψ, i

³
2Xf + atXφ + bt

´
ϕ
E

(3.8)
with

at :=
2

t

Z t

0
ds

Z s

0
dr
³
u0,0 ◦ φr

´
and bt :=

1

t

Z t

0
ds
³
ρ−1Xf (ρ)

´
◦ φs.

Furthermore, Assumption 3.4, Lemma 3.2(c) and Leibniz integral rule im-
ply that Xf , Xφ, at and bt are of class C

1. Therefore, we can apply Lemma
3.3 with X := 2Xf + atXφ and g := bt to conclude that At is essentially
self-adjoint in H. 2
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Lemma 3.6. Suppose that Assumptions 2.1, 2.4, and 3.4 are satisfied.
Then, we have for t > 0

(a)
³
Hφ − i

´−1
∈ C1(At) withh

i
³
Hφ−i

´−1
, At

i
= 2

³
Hφ−i

´−1
ctHφ

³
Hφ−i

´−1
−
h³
Hφ−i

´−1
, ct
i
and

ct :=
1

t

Z t

0
ds
³
u0,0 ◦ φs

´
,

(b)
³
Hφ − i

´−1
∈ C2(At).

Proof. (a) Set A :=
³
2iXf + iρ−1Xf (ρ)

´
on C1(M) and take ϕ ∈ C1(M).

Then, we know from Lemma 3.2(b)-(c) thatD³
Hφ + i

´−1
ϕ,Aϕ

E
−
D
Aϕ,

³
Hφ − i

´−1
ϕ
E

=
D³
2iXf + iρ−1Xf (ρ)

´³
Hφ + i

´−1
ϕ,
³
Hφ − i

´−1³
Hφ − i

´
ϕ
E

−
D³

Hφ + i
´−1³

Hφ + i
´
ϕ,
³
2iXf + iρ−1Xf (ρ)

´³
Hφ − i

´−1
ϕ
E

= i d
ds

¯̄̄̄
s=0

nD³
2iXf + iρ−1Xf (ρ)

´³
Hφ + i

´−1
ϕ,
³
Hφ − i

´−1³
Uφ
s − s

´
ϕ
E

−
D³

Hφ + i
´−1³

Uφ
−s − s

´
ϕ,
³
2iXf + iρ−1Xf (ρ)

´³
Hφ − i

´−1
ϕ
Eo

= − d
ds

¯̄̄̄
s=0

nD³
Hφ + i

´−1
ϕ,
³
2Xf + u0,0

´³
Hφ − i

´−1
Uφ
s ϕ
E

−
D³

Hφ + i
´−1

ϕ,Uφ
s

³
2Xf + u0,0

´³
Hφ − i

´−1
ϕ
Eo

= −2
¿
ϕ, d

ds

¯̄̄̄
s=0

³
Hφ − i

´−1n
Xf

³
Hφ − i

´−1
Uφ
s − Uφ

s Xf

³
Hφ − i

´−1o
ϕ

À
−
¿
ϕ, d

ds

¯̄̄̄
s=0

³
Hφ − i

´−1n
u0,0

³
Hφ − i

´−1
Uφ
s − Uφ

s u0,0
³
Hφ − i

´−1o
ϕ

À
.

For the first term, the equation
³
Hφ − i

´−1
= i

R∞
0 dr e−r Uφ

r (valid in the

strong sense) and Lemma 3.2(a) imply

d
ds

¯̄̄̄
s=0

³
Hφ − i

´−1n
Xf

³
Hφ − i

´−1
Uφ
s − Uφ

s Xf

³
Hφ − i

´−1o
ϕ

= i d
ds

¯̄̄̄
s=0

R∞
0 dr e−r Uφ

s

³
Hφ − i

´−1³
Uφ
−sXfU

φ
s −Xf

´
Uφ
r ϕ

= i d
ds

¯̄̄̄
s=0

R∞
0 dr e−r Uφ

s

³
Hφ − i

´−1 R−s
0 dt

³
u0,0 ◦ φt

´
Uφ
r Xφϕ

= −i
R∞
0 dr e−r

³
Hφ − i

´−1
u0,0U

φ
r Xφϕ

= i
³
Hφ − i

´−1
u0,0Hφ

³
Hφ − i

´−1
ϕ.
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For the second term, a direct calculation gives

d

ds

¯̄̄̄
s=0

³
Hφ − i

´−1n
u0,0

³
Hφ − i

´−1
Uφ
s − Uφ

s u0,0
³
Hφ − i

´−1o
ϕ

=
h³
Hφ − i

´−1
, u0,0

i
ϕ.

So, putting together the last equations, we getD³
Hφ + i

´−1
ϕ,Aϕ

E
−
D
Aϕ,

³
Hφ − i

´−1
ϕ
E

=
D
ϕ,
n
− 2i

³
Hφ − i

´−1
u0,0Hφ

³
Hφ − i

´−1
+ i

h³
Hφ − i

´−1
, u0,0

io
ϕ
E
.

Therefore, for each t > 0 we obtainD³
Hφ + i

´−1
ϕ,Atϕ

E
−
D
Atϕ,

³
Hφ − i

´−1
ϕ
E

= 1
t

R t
0 ds

nD³
Hφ + i

´−1
Uφ
−sϕ,AU

φ
−sϕ

E
−
D
AUφ

−sϕ,
³
Hφ − i

´−1
Uφ
−sϕ

Eo
= 1

t

R t
0 ds

D
Uφ
−sϕ,

n
− 2i

³
Hφ − i

´−1
u0,0Hφ

³
Hφ − i

´−1
+
h³
Hφ − i

´−1
, u0,0

io
Uφ
−sϕ

E
=
D
ϕ,
n
− 2i

³
Hφ − i

´−1
ctHφ

³
Hφ − i

´−1
+ i

h³
Hφ − i

´−1
, ct
io
ϕ
E

with ct =
1
t

R t
0 ds (u0,0 ◦ φs), and the claim follows by the density of C1(M)

in D(At).

(b) We know from point (a) that
³
Hφ − i

´−1
∈ C1(At) withh

i
³
Hφ − i

´−1
, At

i
= 2

³
Hφ − i

´−1
ctHφ

³
Hφ − i

´−1
−
h³
Hφ − i

´−1
, ct
i

= 2
³
Hφ − i

´−1
ct + 2i

³
Hφ − i

´−1
ct
³
Hφ − i

´−1
−
h³
Hφ − i

´−1
, ct
i
.

So, it is sufficient to show that ct ∈ C1(At). For this, we note that ct ∈
C1(M) due to the assumption ρ−1Xf (ρ) ∈ C1(M), Lemma 3.2(c) and
Leibniz integral rule. Then, we use (3.8) to get for ϕ ∈ C1(M)D

ctϕ,Atϕ
E
−
D
Atϕ, ctϕ

E
=
D
ϕ, ict

³
2Xf + atXφ + bt

´
ϕ
E
−
D
ϕ, i

³
2Xf + atXφ + bt

´
ctϕ

E
=
D
ϕ,−i

³
2Xf (ct) + atXφ(ct)

´
ϕ
E

with
³
2Xf (ct)+atXφ(ct)

´
a bounded multiplication operator, and we note

that this implies the claim because C1(M) is dense in D(At). 2
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In the next proposition, we show that Hφ satisfies a strict Mourre es-
timate on compact subsets of (0,∞) and (−∞, 0). We use the operator
− ln(λ)At as conjugate operator on (0,∞) and the operator ln(λ)At as
conjugate operator on (−∞, 0).

Proposition 3.7 (Strict Mourre estimate). Suppose that Assumptions
2.1, 2.4, and 3.4 are satisfied.

(a) If I ⊂ (0,∞) is a compact set with I ∩ σ(Hφ) 6= ∅, then there exist
t > 0 and a > 0 such that

EHφ(I)
h
iHφ,− ln(λ)At

i
EHφ(I) ≥ aEHφ(I).

(b) If J ⊂ (−∞, 0) is a compact set with J ∩σ(Hφ) 6= ∅, then there exist
t > 0 and a > 0 such that

EHφ(J)
h
iHφ, ln(λ)At

i
EHφ(J) ≥ aEHφ(J).

Before the proof, we recall that the flow {φs}s∈R is ergodic. Therefore,
the spectrum of the operator Hφ in R \ {0} is not empty, and thus there
exist compact sets I ⊂ (0,∞) such that I ∩ σ(Hφ) 6= ∅ and/or compacts
sets J ⊂ (−∞, 0) such that J ∩ σ(Hφ) 6= ∅.
Proof.

(a) Let t > 0. Then, we know from Lemma 3.6(a) that
³
Hφ − i

´−1
∈

C1
³
− ln(λ)At

´
withh

i
³
Hφ − i

´−1
,− ln(λ)At

i
= −2 ln(λ)

³
Hφ − i

´−1
ctHφ

³
Hφ − i

´−1
+ln(λ)

h³
Hφ − i

´−1
, ct
i
.

This, together with (3.2), implies that

EHφ(I)
h
iHφ,− ln(λ)At

i
EHφ(I)

= −
³
Hφ − i

´
EHφ(I)

h
i
³
Hφ − i

´−1
,− ln(λ)At

i³
Hφ − i

´
EHφ(I)

= 2 ln(λ)EHφ(I)ctHφE
Hφ(I)− ln(λ)

³
Hφ − i

´
EHφ(I)

h³
Hφ − i

´−1
, ct
i³

Hφ − i
´
EHφ(I)

= 2
³
ln(λ)

´2
HφE

Hφ(I) + 2 ln(λ)EHφ(J)
³
ct − ln(λ)

´
HφE

Hφ(I)

− ln(λ)
³
Hφ − i

´
EHφ(I)

h³
Hφ − i

´−1
, ct − ln(λ)

i³
Hφ − i

´
EHφ(I)

≥ aIE
Hφ(I) + 2 ln(λ)EHφ(I)

³
ct − ln(λ)

´
HφE

Hφ(I)

− ln(λ)
³
Hφ − i

´
EHφ(I)

h³
Hφ − i

´−1
, ct − ln(λ)

i³
Hφ − i

´
EHφ(I)
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with aI := 2
³
ln(λ)

´2
inf(I) > 0. Furthermore, since {φs}s∈R is uniquely

ergodic, we obtain from Lemma 2.5 that

lim
t→∞

³
ct − ln(λ)

´
=

Z
M
dµu0,0 − ln(λ) = 0

uniformly onM . Therefore, if t > 0 is large enough, there exists a ∈ (0, aI)
such that

EHφ(I)
h
iHφ,− ln(λ)At

i
EHφ(I) ≥ aEHφ(I).

(b) The proof is similar to that of point (a). 2
The next theorem is the main result of the paper.

Theorem 3.8 (Absolutely continuous spectrum). Suppose that As-
sumptions 2.1, 2.4, and 3.4 are satisfied. Then, Hφ has purely absolutely
continuous spectrum, except at 0, where it has a simple eigenvalue with
eigenspace C · 1.

Proof. We know from Lemma 3.6(b) that Hφ is of class C
2
³
− ln(λ)At

´
for all t > 0. Moreover, we know from Proposition 3.7(a) that for each
compact set I ⊂ (0,∞) with I ∩ σ(Hφ) 6= ∅ there exist t > 0 and a > 0
such that

EHφ(I)
h
iHφ,− ln(λ)At

i
EHφ(I) ≥ aEHφ(I).

Therefore, it follows from Theorem 3.1 that Hφ has purely absolutely con-
tinuous spectrum in (0,∞). Since the same holds for (−∞, 0), Hφ has
purely absolutely continuous spectrum, except at 0, where it has a simple
eigenvalue with eigenspace C · 1 due to the ergodicity of the flow {φs}s∈R.
2

We conclude with some remarks on Theorem 3.8.

Remark 3.9. (a) Under Assumptions 2.1, 2.4, and 3.4, the result of The-
orem 3.8 applies, as in the case of Theorem 2.6, to reparametrisations of
classical horocycle flows on the unit tangent bundle of compact connected
orientable surfaces of constant negative curvature.

Our regularity assumptions on the function ρ are Xf (ρ) ∈ C(M) and
ρ−1Xf (ρ) ∈ C1(M). Therefore, Theorem 3.8 extends the results of [6, 23,
25] on the absolutely continuous spectrum of time changes of the classical
horocycle flows on the unit tangent bundle of compact orientable surfaces
of constant negative curvature since the function corresponding to ρ in
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[6, 23, 25] is at least of class C3 (in [23], the function ρ is of class C2, but
it satisfies another additional assumption). Also, the result of Theorem
3.8 answers the question on the regularity of the function ρ raised in [25,
Rem. 3.4]. The result of [6] on Lebesgue spectrum and the result of [23]
for surfaces of finite volume are of a different nature and are not covered
by Theorem 3.8.

(b) In the case of the classical horocycle flows on the unit tangent bun-
dle of compact connected orientable surfaces of negative curvature, L. W.
Green has shown in [7, Thm. B] that the curvature of the surface is nec-
essarily constant if the flow {φs}s∈R admits a C2 uniformly expanding
reparametrisation {eφs}s∈R (and thus a function ρ of class C1). Since it is
possible that a similar argument also applies under our regularity assump-
tions (an anonymous referee signaled this to us), we prefer not to men-
tion the case of compact surfaces of variable negative curvature. However,
we hope that in some future the technics and the regularity assumptions
presented in this manuscript could be improved in order to cover explicit
examples of compact surfaces of variable negative curvature.

(c) In Lemma 3.6, Proposition 3.7 and Theorem 3.8, we stated and
proved the results using only the operator Hφ under study, and not its
square (Hφ)

2 as we did in [23, 25]. This allowed us to simplify the exposition
in comparison to [23, 25].
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