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Abstract
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1. INTRODUCTION

We regard the continuous-time nonlinear programming problem

minimize φ(x) =

Z T

0
f(t, x(t))dt,

subject to g(t, x(t)) ≤ 0 a.e. in [0, T ], x ∈ X.

⎫⎪⎪⎬⎪⎪⎭ (CNP )

HereX is a nonempty open convex subset of the Banach space Ln
∞[0, T ], φ :

X → R, f(t, x(t)) = ξ(x)(t), g(t, x(t)) = γ(x)(t), ξ : X → Λ11[0, T ] and
γ : X → Λm1 [0, T ], where Ln

∞[0, T ] denotes the space of all n-dimensional
vector-valued Lebesgue measurable functions defined on the compact in-
terval [0, T ] ⊂ R, which are essentially bounded, with norm k · k∞ defined
by

kxk∞ = max
1≤j≤n

ess sup{|xj(t)|, 0 ≤ t ≤ T},

where for each t ∈ [0, T ], xj(t) is the jth component of x(t) ∈ Rn and
Λm1 [0, T ] denotes the space of all m-dimensional vector functions which are
essentially bounded and Lebesgue measurable, defined on [0, T ], with the
norm k · k1 defined by

kyk1 = max
1≤j≤m

Z T

0
|yj(t)|dt.

The continuous problem was first investigated in 1953 by Bellman in
[1]. He studied a type of optimization problem, which is now known as a
continuous-time linear problem. After that, various authors have studied
more general continuous-time problems, regarding, for example, nonlinear
problems. In [9], Zalmai obtained Karush-Kuhn-Tucker conditions of op-
timality. The results by Zalmai are natural generalizations of the KKT
conditions in finite dimension. The nonsmooth problem was considered,
for instance, in Brandão et al. [2] and Rojas-Medar et al. [7]. A good list
of references about continuous-time problems can be found in [9].

The notion of invexity was introduced in [4] by Hanson. This concept,
which generalize convexity, is important on getting sufficient conditions of
optimality. In the work [5], Martin relaxed invexity. He introduced the
notion of KKT-invexity (in fact he called it KT-invexity), which is (like
invexity) a sufficient condition for a KKT point to be a global minimizer.
But what is interesting in the Martin’s result is that KKT-invexity is also
a necessary condition of optimality. Martin showed that every KKT point
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is a global minimizer if and only if the problem is KKT-invex. In [6], de
Oliveira and Rojas-Medar obtained a similar result for the continuous-time
problem, but with smooth functions. In this work we generalize the result
of de Oliveira and Rojas-Medar for the nonsmooth case.

2. ASSUMPTIONS AND NOTATION

Let V be an open convex subset of Rn containing the set {x(t) ∈ Rn : x ∈
X, t ∈ [0, T ]}.

We assume that f and gi (the ith component of g), i ∈ I = {1, 2, . . . ,m},
are real functions defined on V × [0, T ].

The functions t 7→ f(t, x(t)) and t 7→ g(t, x(t)) are assumed to be Lebesgue
measurable and integrable for all x ∈ X.

We assume that, given a ∈ V , there exist an ε > 0 and a positive number
k such that for all t ∈ [0, T ], and for all x, y ∈ a+ εB (B denotes the unit
ball of Rn) we have |f(t, x) − f(t, y)| ≤ kkx − yk. Similar hypotheses are
assumed for gi, i ∈ I. Hence, f(t, ·) and gi(t, ·), i ∈ I, are locally Lipschitz
on V throughout [0, T ].

Let x ∈ X and h ∈ Ln
∞[0, T ]. We denote by φ

◦(x;h) and g◦i (t, x(t);h(t)), i ∈
I, the Clarke generalized directional derivative of φ and gi, i ∈ I, at x on
the direction h, respectively. See Clarke [3] for more details.

Let F be the set of all feasible solutions of (CNP) (which we suppose
nonempty), i.e.,

F = {x ∈ X : g(t, x(t)) ≤ 0 a.e. in [0, T ]}.

Given x ∈ F, we denote by Ai(x) the subset of [0, T ] where the ith
constraint is active, i.e.,

Ai(x) = {t ∈ [0, T ] : gi(t, x(t)) = 0}.

3. INVEX CHARACTERIZATION OF KKT SOLUTIONS

In [5] Martin introduced the notion of KKT-invexity for mathematical pro-
gramming problems and proved that every KKT point is a global minimizer
if and only if the problem is KKT-invex. In this section we extend this con-
cept for (CNP) and get a similar result.

Definition 3.1. We say that (CNP) is Karush-Kuhn-Tucker invex (or KKT-
invex) if there exists a function η : [0, T ] × V × V → Rn such that
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η(t, x(t), y(t)) ∈ Ln
∞[0, T ],

φ(x)− φ(y) ≥ φ◦(y; η(x, y)),(3.1)

and

− g◦i (t, y(t); η(t, x(t), y(t)) ≥ 0 a.e. in Ai(y), i ∈ I,(3.2)

for all x, y ∈ F.

Remark 3.2. By η(x, y) in (3.1) we mean the map from X × X into
Ln
∞[0, T ] given by η(x, y)(t) = η(t, x(t), y(t)).

Remark 3.3. The definition of invexity differs from the KKT-invexity one
by the requirement that gi(t, x(t))− gi(t, y(t)) ≥ g◦i (t, y(t); η(t, x(t), y(t)) a.
e. in Ai(y), i ∈ I, instead of (3.2).

Definition 3.4. We say that y ∈ F is a Karush-Kuhn-Tucker solution (or
KKT solution) of (CNP) if there exist λi ∈ L∞[0, T ], i ∈ I, such that

φ◦(y;h) +
Z T

0

X
i∈I

λi(t)g
◦
i (t, y(t);h(t))dt ≥ 0 ∀ h ∈ Ln

∞[0, T ],(3.3)

λi(t)gi(t, y(t)) = 0 a.e. in [0, T ], i ∈ I,(3.4)

λi(t) ≥ 0 a.e. in [0, T ], i ∈ I.(3.5)

Definition 3.5. We say that y ∈ F is a global optimal solution of (CNP)
if φ(x) ≥ φ(y) for all x ∈ F.

In the next example we study a KKT-invex problem which is not an
invex one, where hold the property that every KKT solution is a global opti-
mal solution. So, this example shows that invexity, despite being sufficient,
is not a necessary condition to hold such property.

Example 3.6. Let us consider the following nonlinear continuous-time
problem:

minimize φ(x) =

Z 2

0
f(x(t))dt

subject to g(x(t)) ≤ 0 a.e. in [0, 2], x ∈ L∞[0, 2],
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where f, g : R→ R are given respectively by

f(x) =

(
1− exp(−x) if x ≥ 0,
−x2 if x < 0

and g(x) = −x. Let x, h ∈ R. Is is easy to see that f is Clarke regular (see
[3]) and

f◦(x;h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(−x)h if x > 0,
−2xh if x < 0,
h if x = 0 and h ≥ 0,
0 if x = 0 and h < 0.

Also, g◦(x;h) = −h for all x, h ∈ R.
Let x̄(t) = 0 ∈ L∞[0, 2] and λ̄(t) = 1 ∈ L∞[0, 2]. We have that

φ◦(x̄;h) +
Z 2

0
λ̄(t)g◦(x̄(t);h(t))dt =

Z 2

0
[f◦(0;h(t))− h(t)]dt ≥ 0 ∀ h ∈ L∞[0, 2].

So x̄ = 0 is a KKT solution. Let us suppose that y(t) > 0 a.e. in
P ⊆ [0, 2] is another KKT solution, where P has positive measure. Then
there exists λ ∈ L∞[0, 2], λ(t) ≥ 0 a.e. in [0, 2], satisfying

φ◦(y;h) +
Z 2

0
λ(t)g◦(y(t);h(t))dt ≥ 0 ∀ h ∈ L∞[0, 2],(3.6)

λ(t)g(y(t)) = 0 a.e. in [0, 2].(3.7)

Let ĥ : [0, 2]→ R be defined by

ĥ(t) =

(
−1 if t ∈ P,
0 if t /∈ P.

It is clear that ĥ ∈ L∞[0, 2]. From (3.7) we see that λ(t) = 0 a.e. in P .
Therefore from (3.6) it comes

0 ≤ φ◦(y; ĥ) +
Z 2

0
λ(t)g◦(y(t); ĥ(t))dt

= φ◦(y; ĥ)−
Z 2

0
λ(t)ĥ(t)dt = −

Z
P
exp(−y(t))dt,

what is an absurd. Thus x̄ = 0 is the only KKT solution of this problem.
It is clear that φ(x) ≥ φ(0) for all x ∈ F = {x ∈ L∞[0, 2] :

x(t) ≥ 0 a.e. in [0, 2]}. Thus every KKT solution is a global optimal solu-
tion.
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This problem is not invex. Indeed, if we assume that it is invex we get
a contradiction as follows. Suppose that the problem is invex. Then there
exist η : [0, 2]× V × V → R such that t 7→ η(t, x(t), y(t)) ∈ L∞[0, 2],

φ(x)− φ(y) ≥
Z 2

0
f◦(y(t); η(t, x(t), y(t)))dt

and
−x(t) + y(t) ≥ −η(t, x(t), y(t)) a.e. in [0, 2]

for all x, y ∈ L∞[0, 2]. Using the last inequality, it is not difficult to verify
that f◦(y(t);x(t)−y(t)) ≤ f◦(y(t); η(t, x(t), y(t))) a.e. in [0, 2] for all x, y ∈
L∞[0, 2]. Hence

φ(x)− φ(y)−
Z 2

0
f◦(y(t);x(t)− y(t))dt

≥ φ(x)− φ(y)−
Z 2

0
f◦(y(t); η(t, x(t), y(t)))dt ≥ 0(3.8)

for all x, y ∈ L∞[0, 2]. For x(t) = 0 and y(t) = t in [0, 2] we have

φ(x)− φ(y)−
Z 2

0
f◦(y(t);x(t)− y(t))dt = −4 exp(−2) < 0,

which contradicts (3.9).
Now we show that this problem is KKT-invex. Define η : V × V → R

by

η(x, y) =

⎧⎪⎨⎪⎩
exp(y)(f(x)− f(y)) if y > 0,
(−2y)−1(f(x)− f(y)) if y < 0,
f(x)− f(y) if y = 0.

Let x, y ∈ F and t ∈ [0, 2]. We have that

f◦(y(t); η(x(t), y(t))) =

⎧⎪⎨⎪⎩
exp(−y(t))η(x(t), y(t)) = f(x(t))− f(y(t)) if y(t) > 0,
−2y(t)η(x(t), y(t)) = f(x(t))− f(y(t)) if y(t) < 0,
η(x(t), y(t)) = f(x(t))− f(y(t)) if y(t) = 0,

so that

φ(x)− φ(y)−
Z 2

0
f◦(y(t); η(x(t), y(t)))dt = 0

and for t ∈ A(y) = {t ∈ [0, 2] : y(t) = 0},

−g◦(y(t); η(x(t), y(t))) = 1− exp(−x(t)) ≥ 0.

Therefore this problem is KKT-invex.
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Different of the finite dimensional case, here we need of a constraint
qualification.

Definition 3.7. We say that the constraint g satisfies (CQ) at y ∈ F if
there do not exist ui ∈ L∞[0, T ], ui ≥ 0, i ∈ I, not all zero, such thatX

i∈I

Z
Ai(y)

ui(t)g
◦
i (t, y(t);h(t))dt ≥ 0 ∀ h ∈ Ln

∞[0, T ].

Lemma 3.8. Let y ∈ F and assume that g satisfies (CQ) at y. If y is not
a KKT solution of (CNP) then there exists h ∈ Ln

∞[0, T ] such that

φ◦(y;h) < 0,(3.9)

g◦i (t, y(t);h(t)) ≤ 0 a.e. in Ai(y), i ∈ I.(3.10)

Proof. If the system in (3.9) and (3.10) does not have a solution, par-
ticularly, the system

φ◦(y;h) < 0,

χi(t)g
◦
i (t, y(t);h(t)) ≤ 0 a.e. in [0, T ], i ∈ I,

does not have a solution, where χi : [0, T ]→ R is defined for each i ∈ I by

χi(t) =

(
1 if t ∈ Ai(y),
0 if t /∈ Ai(y).

It follows from Corollary 3.1 on page 134 of [8], that there exist u0 ∈ R
and ui ∈ L∞[0, T ], i ∈ I, with u0 ≥ 0 and ui(t) ≥ 0 a.e. in [0, T ], i ∈ I,
not all zero, such that

u0φ
◦(y;h) +

Z T

0

X
i∈I

ui(t)χi(t)g
◦
i (t, y(t);h(t))dt ≥ 0 ∀ h ∈ Ln

∞[0, T ].

(3.11)

If u0 = 0 we have a contradiction with the constraint qualification.
Therefore u0 > 0. Then dividing the expression in (3.11) by u0 and defining
λi = uiχi/u0, i ∈ I, we obtain

φ◦(y;h) +
Z T

0

X
i∈I

λi(t)g
◦
i (t, y(t);h(t))dt ≥ 0 ∀ h ∈ Ln

∞[0, T ].

Thus y is a KKT solution, what contradicts the hypothesis. Hence,
there exists h ∈ Ln

∞[0, T ] satisfying (3.9) and (3.10). 2
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Theorem 3.9. Assume that g satisfies (CQ) at each y ∈ F. Then, every
KKT solution of (CNP) is a global optimal solution if and only if (CNP)
is KKT-invex.

Proof. Necessity. Suppose that every KKT solution of (CNP) is a global
optimal solution. Let x, y ∈ F.

If φ(x) < φ(y), then y is not a global optimal solution, and so, by
hypothesis, y is not a KKT solution of (CNP). It follows from Lemma 3.8
that there exists h ∈ Ln

∞[0, T ] satisfying (3.9) and (3.10). Set

α = φ◦(y;h)

and
η(t, x(t), y(t)) = {φ(x)− φ(y)}α−1h(t).

Because of (3.9) we know that

{φ(x)− φ(y)}α−1 > 0.(3.12)

Hence

φ◦(y; η(x, y)) = φ◦(y; {φ(x)− φ(y)}α−1h) = {φ(x)− φ(y)}α−1φ◦(y;h),

and therefore
φ◦(y; η(x, y)) = φ(x)− φ(y).(3.13)

From (3.10) and (3.12) we get

g◦i (t, y(t); η(t, x(t), y(t))) = {φ(x)− φ(y)}α−1g◦i (t, y(t);h(t))
≤ 0 a.e. in Ai(y), i ∈ I.

Hence

− g◦i (t, y(t); η(t, x(t), y(t))) ≥ 0 a.e. in Ai(y), i ∈ I.(3.14)

By (3.13) and (3.14) we conclude that for φ(x) < φ(y), (CNP) is KKT-
invex.

If φ(x) ≥ φ(y), define η(t, x(t), y(t)) = 0 a.e. in [0, T ]. We have that

φ(x)− φ(y)− φ◦(y; η(x, y)) ≥ 0(3.15)

and
g◦i (t, y(t); η(t, x(t), y(t))) = 0 a.e in Ai(y), i ∈ I.(3.16)
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So, from (3.15) and (3.16) we see that (CNP) is KKT-invex.
In the cases above we do not define η for x, y /∈ F. But we can take

η(t, x(t), y(t)) = 0 when x or y is not feasible.
Sufficiency. Suppose that (CNP) is KKT-invex. Let y ∈ F be a KKT

solution of (CNP). It follows from (3.4) that λi(t) = 0 a.e. in [0, T ] \
Ai(y), i ∈ I. Then by (3.1), (3.2) and (3.5) we have

φ(x)− φ(y)− φ◦(y; η(x, y))−
Z T

0

X
i∈I

λi(t)g
◦
i (t, y(t); η(t, x(t), y(t)))dt ≥ 0

for all x ∈ F. So, by (3.3) we obtain φ(x) ≥ φ(y) for all x ∈ F, that is, y is
a global optimal solution of (CNP). 2

Remark 3.10. We observe that the assumption that g satisfies (CQ) in
the last theorem is necessary just on proving the “only if” part.

Remark 3.11. If f(t, ·) and g(t, ·) are Clarke regular at y, then (3.3) in
Definition 3.4 can be replaced by

0 ∈ ∂L(y, λ),

where

L(x, λ) =

Z T

0

"
f(t, x(t)) +

X
i∈I

λi(t)gi(t, x(t))

#
dt.

Theorem 3.9, of course, is still valid.

Remark 3.12. It is well known that a convex function is Clarke regular.
In particular, when f(t, ·) and g(t, ·) are convex at y ∈ X throughout [0, T ]
they are regular at y and we have

∂L(y, λ) =

Z T

0

"
∂f(t, y(t)) +

X
i∈I

λi∂gi(t, y(t))

#
dt.(3.17)

An interesting open problem is to know if the relation (3.17) is still true
when f(t, ·) and g(t, ·) are invex at y throughout [0, T ]. When we have a
finite sum instead of an integral, we verified that this is true.
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