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Abstract

Let Q be a topological space and S a semigroup of local homeomor-
phisms of Q. The purpose of this paper is to generalize the notion of
reversibility and to introduce the reversible sets. And furthermore, it
is established a relation between these sets and the control sets for S
and it is studied reversibility of semigroup actions on fiber bundles.
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1. Introduction

The purpose of this article is to study reversibility properties of actions
of semigroups of local homeomorphisms on topological spaces and fiber
bundles.

Recall that an abstract semigroup S is said to be left reversible if aS ∩
bS 6= ∅ and right reversible if Sa ∩ Sb 6= ∅ for every a, b ∈ S, and it is
reversible if it is both left and right reversible (see e.g. Hilgert-Neeb [5]
and Ruppert [8]). In this paper we consider a semigroup S, whose elements
are local homeomorphisms of a topological space Q. The corresponding
concept says that the action of S on Q is reversible (or S is Q-reversible,
for short) if for all x, y ∈ Q the orbits Sx and Sy have a common point.

The concept of reversibility for abstract semigroups was originally intro-
duced in relation with the problem of embedding semigroups into groups.
This concept was fully studied by Ruppert [8] for open semigroups in Lie
groups and related to the connectivity properties of the semigroup, a re-
lation which was further developed in Rocio-San Martin [7]. Reversibility
properties of semigroups appear also in different situations like e.g. in the
study of homotopy of semigroups in semi-simple Lie groups in San Martin-
Santana [11] or, in a less explicitly way, in the study of harmonic functions
on noncompact symmetric spaces in Furstenberg [4]. In view of such po-
tential applications of the notion of reversibility, it is natural to study the
generalization proposed in this paper.

We describe now the contents of the paper. In Section 2 we discuss the
set up, while in Section 3 we introduce and discuss the concept of reversibil-
ity of semigroup actions. In Section 4 the we introduce the reversible sets
that are, roughly speaking, the maximal subsets of the topological space in
which the reversibility of the semigroup occurs. In the section 5, we relate
the concept of the reversibility with that of control set for semigroup ac-
tions. Finally, in the last section we study reversibility of semigroup actions
in fiber bundles in terms of reversibility on the base space and on the fiber.

2. Set up

In order to generalize the concept of reversibility to semigroups actions
on topological spaces we need of a brief summary of semigroups of local
homeomorphisms. We refer to San Martin [10] for more details.

Let Q be a topological space and denote by Cl (Q) the set of continuous
maps g : dom (g)→ Q, such that the domain dom (g) is a non-empty open
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subset of Q. If g, h ∈ Cl (Q) and h−1 (dom (g)) 6= ∅ we have a well defined
map gh : h−1 (dom (g))→ Qwhich is still an element of Cl (Q), thus defining
— partially — a product in this set. Of course, by restricting properly the
domains of the maps the product is associative. In this enlarged sense we
say that Cl (Q) is a local semigroup. More generally, a subset S ⊂ Cl (Q) is
said to be local semigroup if it is closed under the multiplication in Cl (Q),
that is, if the composition of two elements of S are still in S.

Following the commonly used terminology a local semigroup will be
said to be a local monoid (or simply a monoid) if it contains the identity
map 1 = 1Q of Q. Any local semigroup can be turned into a monoid by
adjoining the identity map.

Denote by Hl (Q) ⊂ Cl (Q) the set of local homeomorphisms of Q. By
definition g : domg → img belongs to Hl (Q) if and only if both domg and
img are open sets and g is a homeomorphism between them. Of course
the inverse g−1 of g ∈ Hl (Q) also belongs to Hl (Q) and maps img onto
domg. Most of the theory of semigroup actions will be accomplished with
the assumption that S is contained in Hl (Q). In this case we say that the
semigroup is invertible and put

S−1 = {g−1 : g ∈ S}

for the corresponding inverse semigroup.

Throughout the paper assume that[
φ∈S

dom(φ) = Q.

If x ∈ Q, we denote its orbit for the S action by

Sx = {φ (x) such that φ ∈ S}.

Using the standard notation of control theory we say that a local semi-
group S is accessible if int(Sx) 6= ∅ for every x ∈ Q and we say that S
is transitive on Q if S(x) = Q for all x ∈ Q. From now on, and in the
whole paper we assume that S is a semigroup satisfying the accessibility
property.

Denote by G(S), or simply G, the subgroup of Hl (Q) generated by S.
Recall that a semigroup S of Hl (Q) is transitive on Q if S(q) = Q for all
q ∈ Q.
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3. Reversibility

We begin this section by defining our generalization of reversibility.

Definition 1. Let S be a subsemigroup of Hl (Q) and A ⊂ Q. We say
that S is reversible on A ⊂ Q, or simply A-reversible if S(x) ∩ S(y) 6= ∅
for every x, y ∈ A.

It is clear that if S is reversible on Q, then G(S) is transitive on Q. The
converse it is not true as can be seen by example below

Example 1. Take S = Sl(n,R+), note that S is not reversible onRn\{0},
although G(S) is transitive on Rn\{0}.

Proposition 1. If S is reversible on Q then SS−1(q) ⊂ S−1S(q) for all
q ∈ Q. Furthermore, if G(S) is transitive on Q then SS−1(q) ⊂ S−1S(q)
for all q ∈ Q implies that S is Q-reversible.

Proof: Suppose that S is reversible, take q ∈ Q and φ, ψ ∈ S. It follows
that there exists y ∈ Q such that

y ∈ S(ψφ−1(q)) ∩ S(q).

Let γ, η ∈ S be local homeomorphisms such that y = γ(ψφ−1(q)) = η(q).
Thus

ψφ−1(q) = γ−1(y) = γ−1(η(q)).

Now, assuming that G(S) is transitive take x, y ∈ Q and suppose that
SS−1(q) ⊂ S−1S(q), for all q ∈ Q. Hence it is not difficult to see that
G(S)(q) = S−1S(q), for all q ∈ Q. Then, by transitivity of G(S) on Q
there exist ψ, φ ∈ S such that y = φ−1ψ(x). With this, ψ(x) = φ(y) show-
ing that S(x) ∩ S(y) 6= ∅. 2

The example 1 shows that the hypothesis of the converse of the above
proposition is essential. The next proposition shows that the reversibility
of the Definition 1 in fact generalizes the classical concept of reversibility.
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Proposition 2. If a semigroup S is right [left] reversible and if G(S) is
transitive on Q then S [S−1] is reversible on Q.

Proof: If S is right reversible then SS−1 ⊂ S−1S. Therefore SS−1(q) ⊂
S−1S(q) for all q ∈ Q. Since G(S) is transitive, by proposition 1 it follows
that S is reversible on Q. On the other hand, if S is left reversible then
S−1 is right reversible, therefore this case is reduced to last one. 2

The next example shows that the converse of this proposition is not
true.

Example 2. Take S = Sl+(n,R), the semigroup of matrices in Sl(n,R)
whose entries are non-negative real numbers. Since Sl(n,R) is a connected
semi-simple Lie group with finite center we know from Theorem 6.7 in [12]
that S is not reversible. Now, let Q be the positive orthant in Rn. Take
the canonical action of S on Q given by x ∈ Q → φ(x), with φ ∈ S.
Then S is reversible on Q. In fact, first take x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in Q with xi and yi strictly positive. Then, by putting

g = λdiag(y1/x1, . . . , yn/xn) with λ = n

q
x1···xn
y1···yn it follows that g ∈ S and

gx = λy, λ > 0. If λ = 1 is clear that Sx∩ Sy 6= ∅. If λ 6= 1, by taking λ−1
if necessary, we can assume that λ > 1 In this case take h = (aij) ∈ S given
by a11 =

1
λn−1 , a12 = (λ− 1

λn−1 )
y1
y2
, aii = λ with i = 2, 3, . . . n and aij = 0

for the others i, j. Then hy = λy. Therefore, as gx = λy we have gx = hy
and hence Sx ∩ Sy 6= ∅. If λ < 1, a similar arguments results that for all
x, y ∈ intQ. Since for all x ∈ Q there exists g ∈ S such that gx ∈ intQ it
follows that Sx ∩ Sy 6= ∅ for all x, y ∈ Q.

Note that S is not reversible in Rn\{0}. In fact, as the positive, Q, and
negative orthant, Q−, are invariant by S we have Sx∩Sy 6= ∅ for all x ∈ Q
and y ∈ Q−.

About transitivity we have from the above definitions that S is reversible
on Q if it is transitive on Q. But the converse is not true. For example, let
S be the semigroup R+ acting on R by translations. The semigroup S is
reversible on R but it is not transitive.

We dedicate the remainder of this section to prove that under reversibil-
ity it is possible to translate compact sets into an orbit of the semigroup. An
special case of this result is one of the steps used in [11] to study homotopy
of semigroups.
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Lemma 1. The semigroup S is reversible on Q if and only if for every
finite subset {x1, . . . , xk} ⊂ Q one of the following conditions holds

1. S(x1) ∩ · · · ∩ S(xk) 6= ∅.
2. There exists x ∈ Q such that xi ∈ S−1(x) for i = 1, . . . , k.

Proof: It is not difficult to see that (1) implies the reversibility. Now
suppose that S is reversible and also suppose, by induction , that S(x1) ∩
· · · ∩ S(xk−1) 6= ∅ for k ≥ 3. Take x ∈ S(x1) ∩ · · · ∩ S(xk−1). It is clear
that S(x) ⊂ S(x1) ∩ · · · ∩ S(xk−1). Since S is reversible there exists y ∈
S(x)∩S(xk). With this S(y) ⊂ S(x)∩S(xk )̇ ⊂ S(x1)∩ · · ·∩S(qk). In order
to show the equivalence with (2) take x in the intersection S(x1)∩· · ·∩S(xk).
Then xi ∈ S−1(x) for i = 1, . . . , k. On the other hand, if xi ∈ S−1(x) for
i = 1, . . . , k then x ∈ (S−1)−1(xi) and thus S(x1) ∩ · · · ∩ S(xk) 6= ∅. 2

The above lemma implies the following result.

Corollary 1. The semigroup S−1 is reversible on Q if and only if for every
finite subset {x1, . . . , xk} ⊂ Q there exists x ∈ Q such that xi ∈ S(x) for
all i = 1, . . . , k.

It was proved in [11] that if a semigroup S is reversible then it is possible
to translate compact sets of groups inside semigroups. The next proposition
generalizes this result to semigroups of local homeomorphisms.

Proposition 3. Suppose that S−1 is reversible and accessible on Q. Take
the compact subset K ⊂ Q. Then there exists x ∈ Q such that K ⊂ S(x).

Proof: As S−1 is reversible we have G(y) = SS−1(y) for all y ∈ Q. Con-
sequently, by transitivity of G we have

K ⊂
[
φ∈S

S(φ−1(y)) for all y ∈ Q.

Since S is accessible and K is compact there exist φ1, . . . φk ∈ S such that

K ⊂
k[
i=1

S(φ−1i (y)).

Now by Lemma 1 there exists x ∈ Q such that φ−1i (y) ∈ S(x) for i =
1, . . . , k. With this S(φ−1i (y)) ⊂ S(x) for i = 1, . . . , k and hence K ⊂ S(x).
2
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4. Reversible set

In this section we look at the regions of the space Q where reversibility
occurs. The notion of restricted reversibility is formalized in the next defi-
nition. We assume here that S is a semigroup of Hl (Q) and G(S) transitive
on Q.

Definition 2. We say that a non-empty subset A ⊂ Q is S-reversible on
A if S(x) ∩ S(y) 6= ∅ for all x, y ∈ A.

Note that the existence of subsets where occurs this reversibility is ob-
vious.

Note that if A ⊂ Q is S- reversible on A and S(x)∩A 6= ∅ then A∪{x}
is also S-reversible on A ∪ {x}. In fact, take y ∈ A and φ ∈ S such that
φ(x) ∈ A. Then S(φ(x)) ∩ S(y) 6= ∅, so that S(x) ∩ S(y) 6= ∅.

The next result guarantees the existence of a kind of maximal reversible
sets, defined as follow. A subset R ⊂ Q is a maximal S-reversible on R if
it is S-reversible on R and if x /∈ R then R∪ {x} it is not a S-reversible on
R ∪ {x}. By the above remark this is equivalent to S(x) ∩R = ∅.

Proposition 4. If A ⊂ Q is a S-reversible on A then there exists a maxi-
mal S-reversible containing A.

Proof: Consider F the family of all subsets of Q that are S-reversible on
Q and that contain A. If T ⊂ F is a chain then U = ∪C∈TC is an upper
bound of T in F . Clearly, S is U-reversible. Therefore F has at least one
maximal element. 2

Definition 3. A non empty subset R ⊂ Q is called reversible set for the
S-action if:

1. R is S-reversible on R,

2. R is maximal with this property.

The next example shows that the intersection of reversible sets can be
non-empty.



28 O. G. do Rocío, L. A. B. San Martín and A. J. Santana

Example 3. Consider the natural action of the semigroup S = SL+(2,R)
onR2 and denote by Qi the ith quadrant. The reversible sets for this action
are R1 = {(x, y) : 0 ≤ y} ∪ {(x, y) : 0 ≤ x} and R2 = {(x, y) : y ≤ 0} ∪
{(x, y) : x ≤ 0}. In fact, in case of R1, as S(x) ∩ S(y) 6= ∅ for all x, y ∈ Q1
(see Example 2) it is enough to prove that for all x = (x1, x2) ∈ Q4,
there exists g ∈ S such that gx ∈ Q1. Hence, taking, e.g., g = (aij) ∈ S
with a12 = 0, a22 = 1/a11 and a21 satisfying a21x1 + (1/a11)x2 > 0 we
have gx ∈ Q1 and therefore R1 is S-reversible on R1. The maximality is
consequence of Q3 be invariant for S-action (see [9]). In case of R2, the
computations are similar.

Example 4. Let S = R+\{0} and consider its action on R2 defined by
t(x, y) = (x, ty). Then the reversible sets for this action are the sets {(x, 0)},
{(x, y) : y > 0} and {(x, y) : y < 0}.

The next result shows that the reversible sets can be characterized by
intersection of G(S)-orbits of its elements.

Proposition 5. If R is a reversible set then R = ∩x∈RS−1S(x).

Proof: If x, y ∈ R then there exist φ, γ ∈ S such that φ(x) = γ(y).
Thus y = γ−1φ(x) and therefore R ⊂ ∩x∈RS−1S(x)̇. On the other hand,
if y ∈ ∩x∈RS−1S(x) then y ∈ S−1S(x) for all x ∈ R. Consequently
S(x) ∩ S(y) 6= ∅ for all x ∈ R. Hence, by maximality of R it follows
that y ∈ R. 2

5. Reversible sets and control sets

In this section it is established relations between the reversible sets and
the control sets. To obtain these relations we recall some basic facts about
action of semigroups on topological spaces.

A control set of S is a subset D ⊂ Q with non-empty interior such
that D ⊂ cl(Sx) for every x ∈ D and is maximal with these properties. If
in addiction D is invariant under the action of S it is called an invariant
control set (see San Martin [9] and San Martin-Tonelli [12] for a more
detailed study).
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Let
D0 = {x ∈ D : x ∈ int(Sx) ∩ int(S−1x)}

be the set D0 is called the set of transitivity (or core) of the control set D.
The control set D is said to be effective control set if D0 6= ∅.

The domain of attraction of a subset D ⊂ Q is defined to be

A(D) = {x ∈ Q : Sx ∩D 6= ∅}.

The control sets for the S-action on Q are ordered by putting D1 ≤ D2 if
there are x ∈ D1 and g ∈ S such that gx ∈ D2, that is, D1 ∩A(D2) 6= ∅.

Proposition 6. Suppose that S is accessible. Then any control set D ⊂ Q
is S-reversible on D.

Proof: We begin by claiming that intD ∩ Sx 6= ∅, for all x ∈ D. In
fact, consider y ∈ intD ⊂ D ⊂ cl(Sx). Then as intD is open, it follows
that int(D) ∩ Sx 6= ∅. Now take x, y ∈ D, as intD ∩ Sy 6= ∅ there exists
a ∈ S such that ay ∈ intD. Then ay ∈ intD ⊂ cl(Sx). If b ∈ S we have
b(ay) ⊂ b(cl(Sx)) ⊂ cl(bSx) ⊂ cl(Sx) implying that S(ay) ⊂ cl(Sx). With
this and recalling that S(ay) is open it follows that there exists c ∈ S such
that cay ∈ Sx. Therefore, Sx ∩ Sy 6= ∅. 2

Corollary 2. Suppose that S is accessible. Then any control set D ⊂ Q
is S−1-reversible on D.

Proof: Take x, y ∈ D0, then there exists g, h ∈ int(S) such that gx = y =
h−1x. Thus g−1y = x = g−1h−1x and hence S−1x∩S−1y 6= ∅. Now by ac-
cessibility and density arguments it is easy to conclude that S−1x∩S−1y 6= ∅
for all x, y ∈ D. 2

Note that if D is a control set for S then D is S-reversible on D and
hence there exists a reversible set R(D) containing D.

The next result shows that the domain of attraction A(C) of a S-
invariant control set C in Q is equal to the reversible set for S-action.

Proposition 7. If C is an invariant control set for S then A(C) = R(C).
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Proof: Take x ∈ R and y ∈ C0. As C0 ⊂ R then Sx∩Sy 6= ∅. But Sy = C0

(see [9] Proposition 2.1), then Sx ∩C0 6= ∅. Hence there exists φ ∈ S such
that φ(x) ∈ C0. So x ∈ A(C). Therefore, R ⊂ A(C). Conversely, take
x, y ∈ A(C). Then there exist φ, ϕ ∈ S such that φ(x), ϕ(y) ∈ C. Thus,
as S is reversible on C we have Sφ(x) ∩ Sϕ(y) 6= ∅ and on the other hand
Sφ = Sϕ = S. Then S(x) ∩ S(y) 6= ∅. Hence S is reversible on A(C) and
by maximality, A(C) ⊂ R. Therefore, A(C) = R. 2

About the relation between uniqueness of invariant control set and re-
versibility we have

Proposition 8. If S is accessible and reversible on Q then there exists at
most one invariant control set for S in Q.

Proof: Suppose that there are two invariant control sets, C1 and C2, for
S in Q. Take x ∈ C1 and y ∈ C2. By invariance of C1 and C2 and by
accessibility of S it follows that cl(Sx) = C1 and cl(Sy) = C2. Now using
the reversibility we have Sx∩ Sy 6= ∅, hence Sy ∩C1 6= ∅. This shows that
C1 ≤ C2. Similarly, it shows that C2 ≤ C1. Therefore C1 = C2. 2

A sufficient condition for the existence of just one invariant control
set for S in Q is C = ∩x∈Qcl(Sx) 6= ∅. On the other hand, considering
C = ∩x∈Qcl(Sx) 6= ∅ and taking x ∈ Q we have Sx ∩ C 6= ∅ and thus
x ∈ A(C). In this case, the domain of attraction is whole space Q. Hence
we have:

Proposition 9. If S is accessible on Q and C = ∩x∈Qcl(Sx) is not empty
then S is reversible on Q.

A kind of converse of this result is:

Proposition 10. Suppose that semigroup S is reversible on Q. Then there
is at most one invariant control set for S in Q.

Proof: Suppose that there are two invariant control sets for S in Q, C1 and
C2. Take x ∈ C1 and y ∈ C2. By invariance of C1 and C2 it follows that
Sx ⊂ C1 and Sy ⊂ C2. Since the control sets do not overlap we conclude
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that Sx ∩ Sy = ∅. Now by Definition 1 it follows that S is not reversible,
contradicting the hypothesis. 2

Corollary 3. Let Q be a compact space and assume that the semigroup S
is accessible and reversible. Then there exists exactly one invariant control
set for S in Q.

Proof: This follows immediately from the above proposition and from the
fact that in compact spaces, under the hypothesis of accessibility, invariant
control sets always exist (see Lemma 3.1 in [1] and Chapter 3 in [3]). 2

6. Reversibility on fiber bundles

We begin by supplying some basic facts about fiber bundles and the action
of semigroups on them. We refer to Kobayashi-Nomizu [6] for the theory
of fiber bundles and to Braga Barros-San Martin [2] for the concepts of
semigroups of local diffeomorphisms of fiber bundles.

Let Q(M,G) be a principal bundle with base space M , total space Q
and structure group G. Thus G acts freely on the right on Q and its orbits
are the fibers Qx = π−1{x}, x ∈ M , where π : Q → M is the canonical
projection. Each fiber is homeomorphic to G. We are assuming here that
Q → M is locally trivial, often a local trivialization is realized through a
local cross section χ : U → Q, U ⊂M .

Recall that Hl (Q) is the set of local homeomorphisms of Q. We say
that an element φ ∈ Hl (Q) is right invariant if φ(q · g) = φ(q) · g, for every
g ∈ G. A semigroup S ⊂ Hl (Q) is right invariant if φ is right invariant for
every φ ∈ S. In this section it is assumed that the semigroup S of local
homeomorphisms of Q is right invariant. With this hypothesis we define

b : S → Hl (M)

by b(φ)(π(q)) = π(φ(q)) if φ ∈ S and q ∈ Q. Since it is reasonable and
cause no confusion we identify b(φ) with φ.

Furthermore, the semigroup S is called reversible on base M if the
semigroup b(S) is reversible on M . Analogously, S is called reversible on
fibers if for all q1, q2 ∈ Q such that π(q1) = π(q2) we have S(q1)∩S(q2) 6= ∅.
The relation between reversibility on principal bundle and on fiber is given
by the next statement.
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Proposition 11. The semigroup S is reversible on Q if and only if is
reversible on fibers and on the base space.

Proof: Suppose that S is reversible on base space and on fibers. Given
q1, q2 ∈ Q, by reversibility on base there exist φ,ϕ ∈ S such that φ(π(q1)) =
ϕ(π(q2)), that is, π(φ(q1)) = π(ϕ(q2)). Now by reversibility on fibers
there exist γ, ξ ∈ S such that γ(φ(q1)) = ξ(ϕ(q2)). This implies that
S(q1) ∩ S(q2) 6= ∅. The converse is immediate from the definitions. 2

Given q ∈ Q we put x = π(q) and define the subset

Sq = {g ∈ G : ∃φ ∈ S, φ(q) = q · g} ⊂ G.

It is easy to check that Sq is a subsemigroup of G if Sq 6= ∅ (cf. [2]).
In Proposition 3 we showed that if S−1 is reversible on a topological

space then we can translate compact sets into the orbits. In case of bundles
we can to obtain the same property under the assumption that Sq is left
reversible on G and that S−1 is

reversible on base M . The proof of this will be divided into 4 steps
given by the next results.

Lemma 2. Suppose that Sq is a left reversible semigroup and take x =
π(q). If q1, q2 ∈ π−1(x) then there exists q3 ∈ π−1(x) such that q1, q2 ∈
S(q3).

Proof: We have q1 = q · g1 and q2 = q · g2 for some g1, g2 ∈ G. As Sq is
left reversible on G there exist a1, a2 ∈ Sq satisfying g

−1
1 a1 = g−12 a2. Thus

a−11 g1 = a−12 g2. Now take y = q · (a−11 g1) = q · (a−12 g2) then y ∈ π−1(x) and

q1 = q · g1 = q · (a1a−11 g1) = (q · a1) · a−11 g1) =

= φa1(q) · (a−11 g1) = φa1(q · (a−11 g1)) = φa1(y).

Analogously it follows that q2 ∈ φa2(y). 2

Lemma 3. With the same hypothesis of the above lemma take q1, q2, . . . , qk ∈
π−1(x). Then there exists z ∈ π−1(x) such that q1, q2, . . . , qk ∈ S(z).
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Proof: Suppose that q1, q2, . . . , qk−1 ∈ S(y) for some y ∈ π−1(x). By
the previous lemma there exists z ∈ π−1(x) with xk, y ∈ S(z). Then
S(y) ⊂ S(z) and hence q1, q2, . . . , qk ∈ S(z). 2

Lemma 4. Suppose Sq left reversible for all q and S
−1 is reversible on base

M . If x = π(q) and q1, q2, . . . , qk ∈ π−1(x) then there exists y ∈ π−1(x)
such that q1, q2, . . . , qk ∈ S(y).

Proof: Consider the projections π(q1), . . . , π(qk) into M . By assumptions
there exist φ1, . . . , φk ∈ S such that φ−11 (π(q1)) = · · · = φ−1k (π(qk)), or
rather, π(φ−11 (q1)) = · · · = π(φ−1k (qk)). By the last lemma there exists y ∈
Q satisfying φ−11 (q1), . . . , φ

−1
k (qk) ∈ S(y). Therefore qi ∈ φi(S(y)) ⊂ S(y)

for i = 1, . . . , k. 2

Now we are in conditions to prove the property that allow us to put a
compact set of Q inside a given S-orbit.

Proposition 12. Keep assuming that Sq is left reversible for all q and that
S−1 is reversible on the base M . If K is a compact set in Q then there
exists y ∈ Q such that K ⊂ S(y).

Proof: By Proposition 3 it is enough to prove that S−1 is reversible on Q.
Take q1, q2 ∈ Q and consider the projection maps π(q1), π(q2) into M . By
assumption of reversibility of S−1 on M there exist φ1, φ2 ∈ S such that
φ−11 (π(q1)) = φ−12 (π(q2)) and by hypothesis that S acts on M it follows
that π(φ−11 (q1)) = π(φ−12 (q2)). Thus φ

−1
1 (q1) and φ−12 (q2) are in the same

fiber q · G, that is, there exist g1, g2 ∈ G such that φ−11 (q1) = q · g1 and
φ−12 (q2) = q · g2. Now by left reversibility of Sq on G there exist a1, a2 ∈ Sq
satisfying g−11 a1 = g−12 a2, i.e. , a

−1
1 g1 = a−12 g2. Then q·(a−11 g1) = q·(a−12 g2)

and hence q ·(a−1i gi) = (q ·a−1i )·gi = φ−1ai (q)·gi = φ−1ai (q ·gi) = φ−1ai (φ
−1
i (qi)),

for i = 1, 2. This implies that φ−1a1 (φ
−1
1 (q1)) = φ−1a2 (φ

−1
2 (q2)) showing that

S−1(q1) ∩ S−1(q2) 6= ∅ and therefore S−1 is reversible on Q. 2

Corollary 4. With the same assumptions and notations of the previous
proposition suppose that S acts transitively on M . Then for every p ∈ Q
there exists g ∈ G such that K · g ⊂ S(p).
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Proof: By previous proposition, K ⊂ S(y) for some y ∈ Q. Now,
by transitivity of the action of S on M , there exists φ0 ∈ S such that
φ0(π(p)) = π(y), that is, π(φ0(p)) = π(y). Then there exists g0 ∈ G such
that y = φ0(p) · g0 = φ0(p · g0). Take α ∈ K, since K ⊂ S(y) there exists
φ ∈ S(y) such that α = φ(y). Thus α = φ(y) = φ(φ0(p · g0)) = ψ(p) · g0,
where ψ denote the composition φ ◦ φ0 ∈ S. Then α · g−10 = ψ(p) ∈ S(p).
Therefore, K · g−10 ⊂ S(p). 2
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