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Universidad Católica del Norte
Antofagasta - Chile

Abstract

Let Λ = {λ1, λ2, . . . , λn} be a set of complex numbers. The non-
negative inverse eigenvalue problem (NIEP) is the problem of deter-
mining necessary and sufficient conditions in order that Λ may be the
spectrum of an entrywise nonnegative n× n matrix. If there exists a
nonnegative matrix A with spectrum Λ we say that Λ is realized by A.
If the matrix A must be symmetric we have the symmetric nonnegative
inverse eigenvalue problem (SNIEP). This paper presents a simple re-
alizability criterion by symmetric nonnegative matrices. The proof is
constructive in the sense that one can explicitly construct symmetric
nonnegative matrices realizing Λ.
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1. Introduction

The nonnegative inverse eigenvalue problem (hereafter NIEP) is the prob-
lem of characterizing all possible spectra of entrywise nonnegative matrices
(References [1-17]). This problem remains unsolved. In the general case,
when the possible spectrum Λ is a set of complex numbers, the problem has
only been solved for n = 3 by Loewy and London [8]. The cases n = 4 and
n = 5 have been solved for matrices of trace zero by Reams [11] and Laffey
and Meehan [7], respectively. When Λ is a set of real numbers (RNIEP),
sufficient conditions have been obtained in [16], [9], [12], [6], [1], [13]. If Λ
has to be the spectrum of a symmetric nonnegative matrix, we have the
symmetric nonnegative inverse eigenvalue problem (SNIEP), which is the
subject of this paper.

A set Λ of real numbers is said to be realizable if Λ is the spectrum
of an entrywise nonnegative matrix. A set K of conditions is said to be
a realizability criterion if any set of real numbers Λ = {λ1, λ2, ....., λn}
satisfying the conditions K is realizable.

In ([13], Theorem 11) the author gives a simple realizability criterion for
the existence of an n×n nonnegative matrix with real prescribed spectrum.
The goal of this work is to show that this criterion is also a realizability
criterion for the symmetric nonnegative inverse eigenvalue problem.

Unlike several of the previous conditions which are sufficient for real-
izability of spectra, the proof of Theorem 11 in [13] is constructive in the
sense that one can explicitly construct nonnegative matrices realizing the
prescribed real spectrum. This is done by employing an extremely useful
result, due to Brauer [3], which shows how to modify one single eigen-
value of a matrix via a rank-one perturbation, without changing any of the
remaining eigenvalues.

In [4] Fiedler obtain some necessary and some sufficient conditions for
a set of n real numbers Λ = {λ1, λ2, . . . , λn} to be the spectrum of an n×n
symmetric nonnegative. There, Fiedler also shows that Kellogg’s realizabil-
ity criterion [6] is sufficient for the existence of a symmetric nonnegative
matrix with prescribed spectrum. In [10], Radwan shows that Borobia’s
realizability criterion [1] is also sufficient for the existence of a symmetric
nonnegative matrix with prescribed spectrum. Soules [15] gives a realizabil-
ity criterion for the existence of a symmetric doubly stochastic matrix and
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also shows how to construct a realizing matrix. Radwan, in [10], point out
that the realizability criteria of Kellogg and Soules are not comparable. In
[5], the authors show that the real nonnegative inverse eigenvalue problem
and the symmetric nonnegative inverse eigenvalue problem are different,
while Wuwen, in [17], shows that both problems are equivalent for n ≤ 4.

This paper is organized as follows: In section 2, we introduce the nota-
tion and previous results, which will be necessary in order to prove Theorem
1 in section 3. In section 3 we prove that Soto’s realizability criterion ([13],
Theorem 11) established here as Theorem 1, is sufficient for the existence
of an n × n symmetric nonnegative matrix with prescribed spectrum. In
section 4 we consider the problem of constructing symmetric nonnegative
matrices realizing spectra, which satisfy Theorem 1. Some examples are
given in section 5.

2. Preliminaries and notation

Following the notation in [2], the set

A≡ {Λ = {λ1, λ2, . . . , λn} ⊂ R : λ1 ≥ |λi|, i = 2, . . . , n}

includes all possible real spectra of nonnegative matrices. We denote

AR={Λ ∈ A : Λ is realizable}.

We denote by Nn the set of all Λ = {λ1, λ2, . . . , λn} ∈ AR, where
λ1 ≥ λ2 ≥ . . . ≥ λn. Similarly, we denote by Sn (cSn) the set of all Λ ∈ Nn

for which there exists an n × n symmetric nonnegative (positive) matrix
with spectrum Λ. We shall only consider real sets Λ = {λ1, λ2, . . . , λn}
satisfying

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 > λp+1 ≥ . . . ≥ λn,

since if λn ≥ 0, then A = diag{λ1, λ2, . . . , λn} is a symmetric nonnegative
matrix.

The following result, due to Fiedler, shows that if A and B are sym-
metric matrices of order n and m, respectively, then we may construct a
new symmetric matrix of order n+m as follows:
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Lemma 1. (Fiedler [4]) Let A be a symmetric n×nmatrix with eigenval-
ues α1, α2, . . . , αn. Let u, kuk = 1, be a unit eigenvector of A corresponding
to α1. Let B be a symmetric m×m matrix with eigenvalues β1, β2, . . . , βm.
Let v, kvk = 1, be a unit eigenvector of B corresponding to β1. Then for
any ρ the matrix

C =

Ã
A ρuvT

ρvuT B

!
has eigenvalues α2, . . . , αn, β2, . . . , βm, γ1, γ2, where γ1 and γ2 are eigenval-
ues of the matrix

bC = Ã
α1 ρ
ρ β1

!
.

The next relevant result, due also to Fiedler [4], is necessary for the
proof of the main result in section 3. Here we present the Wuwen version
of it [17]:

Lemma 2. (Fiedler [4]) If {α1, α2, . . . , αn} ∈ Sn, {β1, β2, . . . , βm} ∈ Sm
and ε ≥ max{0, β1 − α1}, then {α1 + ε, β1 − ε, α2, . . . , αn, β2, . . . , βm} ∈
Sn+m.

We shall also need the following lemma:

Lemma 3. (Fiedler [4]) If Λ = {λ1, λ2, . . . , λn} ∈ Sn and if ε > 0 then

Λε = {λ1 + ε, λ2, . . . , λn} ∈ bSn.
In ([13], Theorem 11) we give the following simple realizability crite-

rion, which also shows how to construct a realizing matrix.

Theorem 1. (Soto [13]) Let Λ = {λ1, λ2, . . . , λn} be a set of real numbers,
such that

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 > λp+1 ≥ . . . ≥ λn.

If
λ1 ≥ −λn −

X
Sk<0

Sk(2.1)

where Sk = λk + λn−k+1, k = 2, 3, . . . ,
£n
2

¤
and Sn+1

2
= min{λn+1

2
, 0} for

n odd, then Λ is realized by a nonnegative matrix A (with constant row
sums).
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Observe that if Λ = {λ1, λ2, . . . , λn} satisfies the sufficient condition
(2.1), then

Λ0 = {−λn −
X
Sk<0

Sk, λ2, . . . , λn}

is a realizable set.

3. Realizability by a symmetric nonnegative matrix

In this section we show that the realizability criterion given by Theorem
1 is sufficient for the existence of a symmetric nonnegative matrix with
prescribed spectrum Λ.

Theorem 1. Let Λ = {λ1;λ2, . . . , λn} be a set of real numbers such that

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 > λp+1 ≥ ... ≥ λn.

If Λ satisfies the realizability criterion given by Theorem 1, then Λ is
realized by an n× n symmetric nonnegative matrix.

Proof. Suppose that Λ satisfies the condition (2.1) of Theorem 1. That
is,

λ1 ≥ −λn −PSi<0 Si,

where Sk = λk + λn−k+1, k = 2, 3, . . . ,
£n
2

¤
and Sn+1

2
= min{λn+1

2
, 0} for

n odd.
It suffices to prove the statement for λ1 = −λn −PSk<0

Sk. In fact, if

λ1 > −λn −PSk<0
Sk then we take eΛ = {µ1, λ2, . . . , λn} with µ1 = −λn −P

Sk<0
Sk. Thus, if eΛ ∈ Sn then we apply Lemma 3 with ε = λ1 − µ1 > 0

to show that Λ ∈ Sn (actually Λ ∈ cSn).
Let

Λk = {λk, λn−k+1}; k = 1, 2, . . . ,
·
n

2

¸
and

Λn+1
2

= {λn+1
2
} for n odd.

Consider the partition
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Λ = ∪[
n
2 ]

k=1Λk with Λ = ∪[
n
2 ]

k=1Λk ∪ Λn+1
2

for n odd.

Observe that some subsets Λk can be realizable thenselves, in particular
by the symmetric nonnegative matrix

Bk =
1

2

Ã
λk + λn−k+1 λk − λn−k+1
λk − λn−k+1 λk + λn−k+1

!
.(3.1)

Without loss of generality we may reorder the subsets Λk, in such
a way that Λ2,Λ3, . . . ,Λt, t ≤

£n
2

¤
, are nonrealizable (Sk < 0), while

Λt+1, . . . ,Λ[n2 ]
are realizable (Sk ≥ 0). Consider, if there is someone, the

realizable sets Λk : If Bk in (3.1) realizes Λk, then the direct sum B = ⊕Bk,

k = t + 1, . . . ,
£
n
2

¤
, with Bn+1

2
=
³
λn+1

2

´
if λn+1

2
≥ 0 for n odd, is a sym-

metric nonnegative matrix realizing ∪[
n
2 ]

k=t+1Λk (∪[
n
2 ]

k=t+1Λk ∪ Λn+1
2
for n

odd).
Now we consider, if there is someone, the nonrealizable sets Λk, k =

2, 3, . . . , t together with the realizable set Λ1 = {λ1, λn} and we renumber
the 2t elements in ∪Λk as

λ1 ≥ λ2 ≥ . . . ≥ λt ≥ λt+1 ≥ . . . ≥ λ2t−1 ≥ λ2t.

For each one of these sets Λk, k = 1, 2, . . . , t, we define the associated
set

Γk = {−λ2t−k+1, λ2t−k+1},(3.2)

which is realizable by the symmetric nonnegative matrix

Ak =

Ã
0 −λ2t−k+1

−λ2t−k+1 0

!
(3.3)

with Γ 2t+1
2
= {0} if λ 2t+1

2
< 0 for n odd, which is realized by the symmetric

nonnegative matrix A 2t+1
2
= (0).

Now, we procede as follows: First, we merge the sets

Γ1 = {−λ2t, λ2t} ∈ S2 and

Γ2 = {−λ2t−1, λ2t−1} ∈ S2
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to obtain, from Lemma 2, a new set ∆2 ∈ S4. In fact, we take ε2 = −S2 =
−(λ2 + λ2t−1) > 0. Then

−λ2t + ε2 = −λ2t − S2 = −λ2t − (λ2 + λ2t−1)
−λ2t−1 − ε2 = −λ2t−1 + S2 = −λ2t−1 + (λ2 + λ2t−1) = λ2

and

∆2 = {−λ2t − S2, λ2, λ2t−1, λ2t} ∈ S4.
Next we merge ∆2 with Γ3 = {−λ2t−2, λ2t−2}. Let ε3 = −S3 = −(λ3 +

λ2t−2) > 0. Then

−λ2t − S2 + ε3 = −λ2t − S2 − S3

−λ2t−2 − ε3 = −λ2t−2 + S3 = −λ2t−2 + (λ3 + λ2t−2) = λ3

and from Lemma 2

∆3 = {−λ2t − S2 − S3, λ3, ∗, . . . , ∗} ∈ S6.
Observe that in each step we recover the first element λk ∈ Λk from

−λ2t−k+1 − εk = λk.

In the j − th step of the procedure ( j ≥ 2), we merge the sets

∆j = {−λ2t − S2 − S3 − · · ·− Sj , λj , ∗, . . . , ∗} and

Γj+1 = {−λ2t−j , λ2t−j}.

Then for εj+1 = −Sj+1 = −(λj+1 + λ2t−j) > 0 we have

−λ2t −
jX

k=2

Sk + εj+1 = −λ2t −
j+1X
k=2

Sk

−λ2t−j − εj+1 = λj+1

and from Lemma 2

∆j+1 = {−λ2t −Pj+1
k=2 Sk, λj+1, ∗, . . . , ∗} ∈ S2j+2.

In the last step ((t− 1)−step) we merge the sets

∆t−1 = {−λ2t −
t−1X
k=2

Sk, λt−1, ∗, . . . , ∗} ∈ S2t−2 and

Γt = {−λt+1, λt+1}.
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Let εt = −St = −(λt + λt+1). Then from Lemma 2 we obtain

∆t = {−λ2t −
tX

k=2

Sk, λt, ∗, . . . , ∗}

= {λ1, λ2, . . . , λt, λt+1, . . . , λ2t−1, λ2t} ∈ S2t.

Now, if n is odd with λ 2t+1
2

< 0 then we also merge ∆t with Γ 2t+1
2
= {0}

to obtain

∆0t = {−λ2t −
tX

k=2

Sk − S 2t+1
2
, λ 2t+1

2
, λt, ∗, . . . , ∗}

= {λ1, . . . , λt, λ 2t+1
2
, λt+1, . . . , λ2t} ∈ S2t+1.

Thus, if A is a symmetrix nonnegative matrix realizing ∆t = ∪tk=1Λk (∆0t =
∪tk=1Λk ∪Λn+1

2
), then A⊕B realizes Λ = {λ1;λ2, . . . , λn}. That is Λ ∈ Sn.

2

4. Constructing the realizing matrix

Let Λ = {λ1, λ2, . . . , λn} be as in Theorem 1 with λ1 = −λn −PSk<0
Sk.

Consider the partition

Λ = ∪[
n
2 ]

k=1Λk with Λ = ∪[
n
2 ]

k=1Λk ∪ Λn+1
2

for n odd,

where Λk = {λk, λn−k+1} ; k = 1, 2, . . . ,
£
n
2

¤
and Λn+1

2
=
n
λn+1

2

o
for n odd.

For k = 2, 3, . . . ,
£n
2

¤
let

A = {Λk : Sk = λk + λn−k+1 < 0}
B = {Λk : Sk = λk + λn−k+1 ≥ 0}.

Note that A or B can be empty, n ≥ 3, and Λn+1
2
can be in A.or B.

Each set Λk ∈ B is realizable in particular by the symmetric nonnegative

matrix Bk in (3.1). Then the direct sum B = ⊕Bk, with Bn+1
2
=
³
λn+1

2

´
if λn+1

2
≥ 0 for n odd, is a symmetric nonnegative matrix realizing ∪Λk

with Λk ∈ B. Now we consider the nonrealizable sets Λk ∈ A, which can
be numbered as Λ2,Λ3, . . . ,Λt, t ≤

£
n
2

¤
with Λ 2t+1

2
= {λ 2t+1

2
} if λ 2t+1

2
< 0

for n odd. For each Λk ∈ A we define the associated set Γk, k = 2, 3, . . . , t,
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as in (3.2) and Γ1 = {−λ2t, λ2t}, which are realizable in particular by the
symmetric nonnegative matrix Ak, k = 1, 2, . . . , t, as in (3.3).

As in the proof of Theorem 1 we merge the sets Γ1 and Γ2 to obtain ∆2 =
{−λ2t − S2, λ2, λ2t−1, λ2t} ∈ S4. Then a symmetric nonnegative matrix
which realizes ∆2 is

M4 =

Ã
A1 ρ2v2u

T
2

ρ2u2v
T
2 A2

!

where vT2 = uT2 = ( 1√
2
, 1√

2
) and ρ2 =

p
(λ2 + λ2t)(λ2 + λ2t−1). Next we

merge ∆2 with Γ3 to obtain

∆3 = {−λ2t − S2 − S3, λ2, λ3, λ2t−2, λ2t−1, λ2t} ∈ S6,

which, according to Lemma 1, is realized by the symmetric nonnegative
matrix

M6 =

Ã
M4 ρ3v3u

T
3

ρ3u3v
T
3 A3

!
,

where M4v3 = (−λ2t−S2)v3, kv3k = 1 and A3u3 = (−λ2t−2)u3, ku3k = 1
and ρ3 must be such that

C3 =

Ã
−λ2t − S2 ρ3

ρ3 −λ2t−2

!

has eigenvalues −λ2t − S2 − S3 and λ3. The process shows that, in the
(k − 1)−step, we may compute the matrix

M2k =

Ã
M2k−2 ρkvku

T
k

ρkukv
T
k Ak

!
, k = 2, 3, . . . , t,

whereM2k−2 is the symmetric nonnegative matrix with spectrum ∆k−1, vk
and uk are unit eigenvectors of M2k−2 and Ak, respectively, corresponding
to the eigenvalues −λ2t−Pk−1

j=2 Sj and λ2t−k+1, respectively,.and ρk must
be such that the matrix

Ck =

Ã
−λ2t −Pk−1

j=2 Sj ρk
ρk −λ2t−k+1

!

has eigenvalues −λ2t −Pk
j=2 Sj and λk.
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Now we compute symmetric nonnegative matrices with spectrum Λ for
n = 4 and n = 5.

Let Λ = {λ1, λ2, λ3, λ4} satisfying the realizability criterion of Theorem
1. We have two cases:

i) λ1 ≥ −λ4 with λ2 + λ3 ≥ 0. Then

A =
1

2


λ1 + λ4 λ1 − λ4 0 0
λ1 − λ4 λ1 + λ4 0 0
0 0 λ2 + λ3 λ2 − λ3
0 0 λ2 − λ3 λ2 + λ3

 .

ii) λ1 ≥ −λ4 − (λ2 + λ3). Then

A =
1

2


0 −2λ4 ρ ρ
−2λ4 0 ρ ρ
ρ ρ 0 −2λ3
ρ ρ −2λ3 0

 ,

where ρ =
√
λ3λ4 − λ1λ2.

Let Λ = {λ1, λ2, λ3, λ4, λ5} satisfying the realizability criterion of The-
orem 1. We have four cases:
i) λ1 ≥ −λ5 with λ2 + λ4 ≥ 0 and λ3 ≥ 0. Then

A =
1

2


λ1 + λ5 λ1 − λ5 0 0 0
λ1 − λ5 λ1 + λ5 0 0 0
0 0 λ2 + λ4 λ2 − λ4 0
0 0 λ2 − λ4 λ2 + λ4 0
0 0 0 0 2λ3

 .

ii) λ1 ≥ −λ5 − (λ2 + λ4) with λ3 ≥ 0. Then

A =
1

2


0 −2λ5 ρ ρ 0
−2λ5 0 ρ ρ 0
ρ ρ 0 −2λ4 0
ρ ρ −2λ4 0 0
0 0 0 0 2λ3

 ,

where ρ =
√
λ4λ5 − λ1λ2.
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iii) λ1 ≥ −λ5 − λ3 with λ2 + λ4 ≥ 0. Then

A =
1

2


0 −2λ5

√
2ρ 0 0

−2λ5 0
√
2ρ 0 0√

2ρ
√
2ρ 0 0 0

0 0 0 λ2 + λ4 λ2 − λ4
0 0 0 λ2 − λ4 λ2 + λ4

 ,

where ρ =
√−λ1λ3.

iv) λ1 ≥ −λ5 − (λ2 + λ4)− λ3. Then

A =
1

2


0 −2λ5 ρ ρ
−2λ5 0 ρ ρ
ρ ρ 0 −2λ4
ρ ρ −2λ4 0

2ηv

2ηvT 0

 ,

where vT = (v1, v2, v3,v4) with v1 = v2 =
p√

2p2+2q2
, v3 = v4 =

q√
2p2+2q2

,

p = µ1+λ4+ρ, q = µ1+λ5+ρ, µ1 = −λ5− (λ2+λ4), ρ =
√
λ4λ5 − λ1λ2

and η =
√−λ1λ3.

5. Examples

Example 1. Let Λ = {9, 5, 3, 3,−5,−5,−5,−5}. We have the partition
Λ = Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4, where Λ1 = {9,−5}, Λ2 = {3,−5}, Λ3 = {3,−5}
and Λ4 = {5,−5}.We define the associated sets Γ1 = {5,−5}, Γ2 = {5,−5}
and Γ3 = {5,−5}. Then we merge Γ1 with Γ2 to obtain

A4 =


0 5 1 1
5 0 1 1
1 1 0 5
1 1 5 0


havig spectrum ∆2 = {7, 3,−5,−5}. Next we merge ∆2 with Γ3 and obtain

A6 =



0 5 1 1 1 1
5 0 1 1 1 1
1 1 0 5 1 1
1 1 5 0 1 1
1 1 1 1 0 5
1 1 1 1 5 0
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with spectrum ∆3 = {9, 3, 3,−5,−5,−5}. Finally we have

A8 =



0 5 1 1 1 1 0 0
5 0 1 1 1 1 0 0
1 1 0 5 1 1 0 0
1 1 5 0 1 1 0 0
1 1 1 1 0 5 0 0
1 1 1 1 5 0 0 0
0 0 0 0 0 0 0 5
0 0 0 0 0 0 5 0


.

with spectrum Λ ∈ S8.

Example 2. Let Λ = {7, 5, 1,−3,−4,−6}. Observe that Λ does not satisfy
Theorem 1. However we still may obtain a symmetrix nonnegative matrix
realizing Λ : Consider the partition Λ = Λ1 ∪ Λ2, where Λ1 = {7,−6} and
Λ2 = {5, 1,−3,−4}. Define Γ1 = {6,−6} and Γ2 = {6, 1,−3,−4}. Then

A2 =


0 4

√
6
2

√
6
2

4 0
√
6
2

√
6
2√

6
2

√
6
2 0 3√

6
2

√
6
2 3 0


realizes Γ2 while

A1

Ã
0 6
6 0

!
realizes Γ1.

By applying Lemma 2 to Γ2 and Γ1 we obtain Λ and from Lemma 1 we
may compute the realizing matrix

A =



0 4
√
6
2

√
6
2

q
3
20

q
3
20

4 0
√
6
2

√
6
2

q
3
20

q
3
20√

6
2

√
6
2 0 3 1√

10
1√
10√

6
2

√
6
2 3 0 1√

10
1√
10q

3
20

q
3
20

1√
10

1√
10

0 6q
3
20

q
3
20

1√
10

1√
10

6 0


.
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