Proyecciones
Vol. 24, N^{o} 1, pp. 65-78, May 2005.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172005000100006

REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES *

RICARDO L. SOTO
Universidad Católica del Norte, Chile

Received: March 2005, Accepted : May 2005.

Abstract

Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and sufficient conditions in order that Λ may be the spectrum of an entrywise nonnegative $n \times n$ matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A. If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ.

AMS classification: 15A18, $15 A 51$.

Key words: symmetric nonnegative inverse eigenvalue problem.

[^0]
1. Introduction

The nonnegative inverse eigenvalue problem (hereafter NIEP) is the problem of characterizing all possible spectra of entrywise nonnegative matrices (References [1-17]). This problem remains unsolved. In the general case, when the possible spectrum Λ is a set of complex numbers, the problem has only been solved for $n=3$ by Loewy and London [8]. The cases $n=4$ and $n=5$ have been solved for matrices of trace zero by Reams [11] and Laffey and Meehan [7], respectively. When Λ is a set of real numbers (RNIEP), sufficient conditions have been obtained in [16], [9], [12], [6], [1], [13]. If Λ has to be the spectrum of a symmetric nonnegative matrix, we have the symmetric nonnegative inverse eigenvalue problem (SNIEP), which is the subject of this paper.

A set Λ of real numbers is said to be realizable if Λ is the spectrum of an entrywise nonnegative matrix. A set K of conditions is said to be a realizability criterion if any set of real numbers $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots ., \lambda_{n}\right\}$ satisfying the conditions K is realizable.

In ([13], Theorem 11) the author gives a simple realizability criterion for the existence of an $n \times n$ nonnegative matrix with real prescribed spectrum. The goal of this work is to show that this criterion is also a realizability criterion for the symmetric nonnegative inverse eigenvalue problem.

Unlike several of the previous conditions which are sufficient for realizability of spectra, the proof of Theorem 11 in [13] is constructive in the sense that one can explicitly construct nonnegative matrices realizing the prescribed real spectrum. This is done by employing an extremely useful result, due to Brauer [3], which shows how to modify one single eigenvalue of a matrix via a rank-one perturbation, without changing any of the remaining eigenvalues.

In [4] Fiedler obtain some necessary and some sufficient conditions for a set of n real numbers $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ to be the spectrum of an $n \times n$ symmetric nonnegative. There, Fiedler also shows that Kellogg's realizability criterion [6] is sufficient for the existence of a symmetric nonnegative matrix with prescribed spectrum. In [10], Radwan shows that Borobia's realizability criterion [1] is also sufficient for the existence of a symmetric nonnegative matrix with prescribed spectrum. Soules [15] gives a realizability criterion for the existence of a symmetric doubly stochastic matrix and
also shows how to construct a realizing matrix. Radwan, in [10], point out that the realizability criteria of Kellogg and Soules are not comparable. In [5], the authors show that the real nonnegative inverse eigenvalue problem and the symmetric nonnegative inverse eigenvalue problem are different, while Wuwen, in [17], shows that both problems are equivalent for $n \leq 4$.

This paper is organized as follows: In section 2, we introduce the notation and previous results, which will be necessary in order to prove Theorem 1 in section 3. In section 3 we prove that Soto's realizability criterion ([13], Theorem 11) established here as Theorem 1, is sufficient for the existence of an $n \times n$ symmetric nonnegative matrix with prescribed spectrum. In section 4 we consider the problem of constructing symmetric nonnegative matrices realizing spectra, which satisfy Theorem 1. Some examples are given in section 5 .

2. Preliminaries and notation

Following the notation in [2], the set

$$
\mathrm{A} \equiv\left\{\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset \mathbf{R}: \lambda_{1} \geq\left|\lambda_{i}\right|, i=2, \ldots, n\right\}
$$

includes all possible real spectra of nonnegative matrices. We denote

$$
\mathrm{AR}=\{\Lambda \in \mathcal{A}: \Lambda \text { is realizable }\} .
$$

We denote by \mathcal{N}_{n} the set of all $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \in \mathcal{A R}$, where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Similarly, we denote by $\mathcal{S}_{n}\left(\widehat{\mathcal{S}_{n}}\right)$ the set of all $\Lambda \in \mathcal{N}_{n}$ for which there exists an $n \times n$ symmetric nonnegative (positive) matrix with spectrum Λ. We shall only consider real sets $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ satisfying

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p} \geq 0>\lambda_{p+1} \geq \ldots \geq \lambda_{n}
$$

since if $\lambda_{n} \geq 0$, then $A=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ is a symmetric nonnegative matrix.

The following result, due to Fiedler, shows that if A and B are symmetric matrices of order n and m, respectively, then we may construct a new symmetric matrix of order $n+m$ as follows:

Lemma 1. (Fiedler [4]) Let A be a symmetric $n \times n$ matrix with eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Let $\mathbf{u},\|\mathbf{u}\|=1$, be a unit eigenvector of A corresponding to α_{1}. Let B be a symmetric $m \times m$ matrix with eigenvalues $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$. Let $\mathbf{v},\|\mathbf{v}\|=1$, be a unit eigenvector of B corresponding to β_{1}. Then for any ρ the matrix

$$
C=\left(\begin{array}{cc}
A & \rho \mathbf{u v}^{T} \\
\rho \mathbf{v u}^{T} & B
\end{array}\right)
$$

has eigenvalues $\alpha_{2}, \ldots, \alpha_{n}, \beta_{2}, \ldots, \beta_{m}, \gamma_{1}, \gamma_{2}$, where γ_{1} and γ_{2} are eigenvalues of the matrix

$$
\widehat{C}=\left(\begin{array}{cc}
\alpha_{1} & \rho \\
\rho & \beta_{1}
\end{array}\right) .
$$

The next relevant result, due also to Fiedler [4], is necessary for the proof of the main result in section 3. Here we present the Wuwen version of it [17]:

Lemma 2. (Fiedler [4]) If $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \in \mathcal{S}_{n},\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\} \in \mathcal{S}_{m}$ and $\varepsilon \geq \max \left\{0, \beta_{1}-\alpha_{1}\right\}$, then $\left\{\alpha_{1}+\varepsilon, \beta_{1}-\varepsilon, \alpha_{2}, \ldots, \alpha_{n}, \beta_{2, \ldots} \ldots, \beta_{m}\right\} \in$ \mathcal{S}_{n+m}.

We shall also need the following lemma:

Lemma 3. (Fiedler [4]) If $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \in \mathcal{S}_{n}$ and if $\varepsilon>0$ then

$$
\Lambda_{\varepsilon}=\left\{\lambda_{1}+\varepsilon, \lambda_{2}, \ldots, \lambda_{n}\right\} \in \widehat{\mathcal{S}}_{n}
$$

In ([13], Theorem 11) we give the following simple realizability criterion, which also shows how to construct a realizing matrix.
Theorem 1. (Soto [13]) Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be a set of real numbers, such that

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p} \geq 0>\lambda_{p+1} \geq \ldots \geq \lambda_{n}
$$

If

$$
\begin{equation*}
\lambda_{1} \geq-\lambda_{n}-\sum_{S_{k}<0} S_{k} \tag{2.1}
\end{equation*}
$$

where $S_{k}=\lambda_{k}+\lambda_{n-k+1}, k=2,3, \ldots,\left[\frac{n}{2}\right] \quad$ and $S_{\frac{n+1}{2}}=\min \left\{\lambda_{\frac{n+1}{2}}, 0\right\}$ for n odd, then Λ is realized by a nonnegative matrix A (with constant row sums).

Observe that if $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ satisfies the sufficient condition (2.1), then

$$
\Lambda^{\prime}=\left\{-\lambda_{n}-\sum_{S_{k}<0} S_{k}, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

is a realizable set.

3. Realizability by a symmetric nonnegative matrix

In this section we show that the realizability criterion given by Theorem 1 is sufficient for the existence of a symmetric nonnegative matrix with prescribed spectrum Λ.

Theorem 1. Let $\Lambda=\left\{\lambda_{1} ; \lambda_{2}, \ldots, \lambda_{n}\right\}$ be a set of real numbers such that

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p} \geq 0>\lambda_{p+1} \geq \ldots \geq \lambda_{n} .
$$

If Λ satisfies the realizability criterion given by Theorem 1, then Λ is realized by an $n \times n$ symmetric nonnegative matrix.

Proof. Suppose that Λ satisfies the condition (2.1) of Theorem 1. That is,

$$
\lambda_{1} \geq-\lambda_{n}-\sum_{S_{i}<0} S_{i},
$$

where $S_{k}=\lambda_{k}+\lambda_{n-k+1}, k=2,3, \ldots,\left[\frac{n}{2}\right]$ and $S_{\frac{n+1}{2}}=\min \left\{\lambda_{\frac{n+1}{2}}, 0\right\}$ for n odd.

It suffices to prove the statement for $\lambda_{1}=-\lambda_{n}-\sum_{S_{k}<0} S_{k}$. In fact, if $\lambda_{1}>-\lambda_{n}-\sum_{S_{k}<0} S_{k}$ then we take $\widetilde{\Lambda}=\left\{\mu_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ with $\mu_{1}=-\lambda_{n}-$ $\sum_{S_{k}<0} S_{k}$. Thus, if $\widetilde{\Lambda} \in \mathcal{S}_{n}$ then we apply Lemma 3 with $\varepsilon=\lambda_{1}-\mu_{1}>0$ to show that $\Lambda \in \mathcal{S}_{n}$ (actually $\Lambda \in \widehat{\mathcal{S}_{n}}$).

Let

$$
\begin{aligned}
\Lambda_{k} & =\left\{\lambda_{k}, \lambda_{n-k+1}\right\} ; k=1,2, \ldots,\left[\frac{n}{2}\right] \text { and } \\
\Lambda_{\frac{n+1}{2}} & =\left\{\lambda_{\frac{n+1}{2}}\right\} \text { for } n \text { odd. }
\end{aligned}
$$

Consider the partition

$$
\Lambda=\cup_{k=1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \text { with } \Lambda=\cup_{k=1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \cup \Lambda_{\frac{n+1}{2}} \text { for } n \text { odd. }
$$

Observe that some subsets Λ_{k} can be realizable thenselves, in particular by the symmetric nonnegative matrix

$$
B_{k}=\frac{1}{2}\left(\begin{array}{ll}
\lambda_{k}+\lambda_{n-k+1} & \lambda_{k}-\lambda_{n-k+1} \tag{3.1}\\
\lambda_{k}-\lambda_{n-k+1} & \lambda_{k}+\lambda_{n-k+1}
\end{array}\right) .
$$

Without loss of generality we may reorder the subsets Λ_{k}, in such a way that $\Lambda_{2}, \Lambda_{3}, \ldots, \Lambda_{t}, t \leq\left[\frac{n}{2}\right]$, are nonrealizable ($S_{k}<0$), while $\Lambda_{t+1}, \ldots, \Lambda_{\left[\frac{n}{2}\right]}$ are realizable $\left(S_{k} \geq 0\right)$. Consider, if there is someone, the realizable sets Λ_{k} : If B_{k} in (3.1) realizes Λ_{k}, then the direct sum $B=\oplus B_{k}$, $k=t+1, \ldots,\left[\frac{n}{2}\right]$, with $B_{\frac{n+1}{2}}=\left(\lambda_{\frac{n+1}{2}}\right)$ if $\lambda_{\frac{n+1}{2}} \geq 0$ for n odd, is a symmetric nonnegative matrix realizing $\cup_{k=t+1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \quad\left(\cup_{k=t+1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \cup \Lambda_{\frac{n+1}{2}}\right.$ for n odd).

Now we consider, if there is someone, the nonrealizable sets $\Lambda_{k}, k=$ $2,3, \ldots, t$ together with the realizable set $\Lambda_{1}=\left\{\lambda_{1}, \lambda_{n}\right\}$ and we renumber the $2 t$ elements in $\cup \Lambda_{k}$ as

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{t} \geq \lambda_{t+1} \geq \ldots \geq \lambda_{2 t-1} \geq \lambda_{2 t}
$$

For each one of these sets $\Lambda_{k}, k=1,2, \ldots, t$, we define the associated set

$$
\begin{equation*}
\Gamma_{k}=\left\{-\lambda_{2 t-k+1}, \lambda_{2 t-k+1}\right\} \tag{3.2}
\end{equation*}
$$

which is realizable by the symmetric nonnegative matrix

$$
A_{k}=\left(\begin{array}{cc}
0 & -\lambda_{2 t-k+1} \tag{3.3}\\
-\lambda_{2 t-k+1} & 0
\end{array}\right)
$$

with $\Gamma_{\frac{2 t+1}{2}}=\{0\}$ if $\lambda_{\frac{2 t+1}{2}}<0$ for n odd, which is realized by the symmetric nonnegative matrix $\frac{A_{\frac{2 t+1}{2}}^{2}}{2}=(0)$.
Now, we procede as follows: First, we merge the sets

$$
\begin{aligned}
& \Gamma_{1}=\left\{-\lambda_{2 t}, \lambda_{2 t}\right\} \in \mathcal{S}_{2} \text { and } \\
& \Gamma_{2}=\left\{-\lambda_{2 t-1}, \lambda_{2 t-1}\right\} \in \mathcal{S}_{2}
\end{aligned}
$$

to obtain, from Lemma 2, a new set $\Delta_{2} \in \mathcal{S}_{4}$. In fact, we take $\varepsilon_{2}=-S_{2}=$ $-\left(\lambda_{2}+\lambda_{2 t-1}\right)>0$. Then

$$
\begin{aligned}
-\lambda_{2 t}+\varepsilon_{2} & =-\lambda_{2 t}-S_{2}=-\lambda_{2 t}-\left(\lambda_{2}+\lambda_{2 t-1}\right) \\
-\lambda_{2 t-1}-\varepsilon_{2} & =-\lambda_{2 t-1}+S_{2}=-\lambda_{2 t-1}+\left(\lambda_{2}+\lambda_{2 t-1}\right)=\lambda_{2}
\end{aligned}
$$

and

$$
\Delta_{2}=\left\{-\lambda_{2 t}-S_{2}, \lambda_{2}, \lambda_{2 t-1}, \lambda_{2 t}\right\} \in \mathcal{S}_{4} .
$$

Next we merge Δ_{2} with $\Gamma_{3}=\left\{-\lambda_{2 t-2}, \lambda_{2 t-2}\right\}$. Let $\varepsilon_{3}=-S_{3}=-\left(\lambda_{3}+\right.$ $\left.\lambda_{2 t-2}\right)>0$. Then

$$
\begin{aligned}
-\lambda_{2 t}-S_{2}+\varepsilon_{3} & =-\lambda_{2 t}-S_{2}-S_{3} \\
-\lambda_{2 t-2}-\varepsilon_{3} & =-\lambda_{2 t-2}+S_{3}=-\lambda_{2 t-2}+\left(\lambda_{3}+\lambda_{2 t-2}\right)=\lambda_{3}
\end{aligned}
$$

and from Lemma 2

$$
\Delta_{3}=\left\{-\lambda_{2 t}-S_{2}-S_{3}, \lambda_{3}, *, \ldots, *\right\} \in \mathcal{S}_{6} .
$$

Observe that in each step we recover the first element $\lambda_{k} \in \Lambda_{k}$ from $-\lambda_{2 t-k+1}-\varepsilon_{k}=\lambda_{k}$.
In the $j-t h$ step of the procedure ($j \geq 2$), we merge the sets

$$
\begin{aligned}
\Delta_{j} & =\left\{-\lambda_{2 t}-S_{2}-S_{3}-\cdots-S_{j}, \lambda_{j}, *, \ldots, *\right\} \text { and } \\
\Gamma_{j+1} & =\left\{-\lambda_{2 t-j}, \lambda_{2 t-j}\right\} .
\end{aligned}
$$

Then for $\varepsilon_{j+1}=-S_{j+1}=-\left(\lambda_{j+1}+\lambda_{2 t-j}\right)>0$ we have

$$
\begin{aligned}
-\lambda_{2 t}-\sum_{k=2}^{j} S_{k}+\varepsilon_{j+1} & =-\lambda_{2 t}-\sum_{k=2}^{j+1} S_{k} \\
-\lambda_{2 t-j}-\varepsilon_{j+1} & =\lambda_{j+1}
\end{aligned}
$$

and from Lemma 2
$\Delta_{j+1}=\left\{-\lambda_{2 t}-\sum_{k=2}^{j+1} S_{k}, \lambda_{j+1}, *, \ldots, *\right\} \in \mathcal{S}_{2 j+2}$.
In the last step $((t-1)-$ step $)$ we merge the sets

$$
\begin{aligned}
\Delta_{t-1} & =\left\{-\lambda_{2 t}-\sum_{k=2}^{t-1} S_{k}, \lambda_{t-1}, *, \ldots, *\right\} \in \mathcal{S}_{2 t-2} \text { and } \\
\Gamma_{t} & =\left\{-\lambda_{t+1}, \lambda_{t+1}\right\}
\end{aligned}
$$

Let $\varepsilon_{t}=-S_{t}=-\left(\lambda_{t}+\lambda_{t+1}\right)$. Then from Lemma 2 we obtain

$$
\begin{aligned}
\Delta_{t} & =\left\{-\lambda_{2 t}-\sum_{k=2}^{t} S_{k}, \lambda_{t}, *, \ldots, *\right\} \\
& =\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}, \lambda_{t+1}, \ldots, \lambda_{2 t-1}, \lambda_{2 t}\right\} \in \mathcal{S}_{2 t}
\end{aligned}
$$

Now, if n is odd with $\lambda_{\frac{2 t+1}{2}}<0$ then we also merge Δ_{t} with $\Gamma_{\frac{2 t+1}{2}}=\{0\}$ to obtain

$$
\begin{aligned}
\Delta_{t}^{\prime} & =\left\{-\lambda_{2 t}-\sum_{k=2}^{t} S_{k}-S_{\frac{2 t+1}{2}}, \lambda_{\frac{2 t+1}{2}}, \lambda_{t}, *, \ldots, *\right\} \\
& =\left\{\lambda_{1}, \ldots, \lambda_{t}, \lambda_{\frac{2 t+1}{2}}, \lambda_{t+1}, \ldots, \lambda_{2 t}\right\} \in \mathcal{S}_{2 t+1}
\end{aligned}
$$

Thus, if A is a symmetrix nonnegative matrix realizing $\Delta_{t}=\cup_{k=1}^{t} \Lambda_{k}\left(\Delta_{t}^{\prime}=\right.$ $\cup_{k=1}^{t} \Lambda_{k} \cup \Lambda_{\frac{n+1}{2}}$), then $A \oplus B$ realizes $\Lambda=\left\{\lambda_{1} ; \lambda_{2}, \ldots, \lambda_{n}\right\}$. That is $\Lambda \in \mathcal{S}_{n}$.

4. Constructing the realizing matrix

Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be as in Theorem 1 with $\lambda_{1}=-\lambda_{n}-\sum_{S_{k}<0} S_{k}$. Consider the partition

$$
\Lambda=\cup_{k=1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \text { with } \Lambda=\cup_{k=1}^{\left[\frac{n}{2}\right]} \Lambda_{k} \cup \Lambda_{\frac{n+1}{2}} \text { for } n \text { odd }
$$

where $\Lambda_{k}=\left\{\lambda_{k}, \lambda_{n-k+1}\right\} ; k=1,2, \ldots,\left[\frac{n}{2}\right]$ and $\Lambda_{\frac{n+1}{2}}=\left\{\lambda_{\frac{n+1}{2}}\right\}$ for n odd. For $k=2,3, \ldots,\left[\frac{n}{2}\right]$ let

$$
\begin{aligned}
& \mathbf{A}=\left\{\Lambda_{k}: S_{k}=\lambda_{k}+\lambda_{n-k+1}<0\right\} \\
& \mathbf{B}=\left\{\Lambda_{k}: S_{k}=\lambda_{k}+\lambda_{n-k+1} \geq 0\right\} .
\end{aligned}
$$

Note that \mathbf{A} or \mathbf{B} can be empty, $n \geq 3$, and $\Lambda_{\frac{n+1}{2}}$ can be in \mathbf{A}.or \mathbf{B}. Each set $\Lambda_{k} \in \mathbf{B}$ is realizable in particular by the symmetric nonnegative matrix B_{k} in (3.1). Then the direct sum $B=\oplus B_{k}$, with $B_{\frac{n+1}{2}}=\left(\lambda_{\frac{n+1}{2}}\right)$ if $\lambda_{\frac{n+1}{2}} \geq 0$ for n odd, is a symmetric nonnegative matrix realizing $\cup \Lambda_{k}$ with ${ }^{2} \Lambda_{k} \in \mathbf{B}$. Now we consider the nonrealizable sets $\Lambda_{k} \in \mathbf{A}$, which can be numbered as $\Lambda_{2}, \Lambda_{3}, \ldots, \Lambda_{t}, t \leq\left[\frac{n}{2}\right]$ with $\Lambda_{\frac{2 t+1}{2}}=\left\{\lambda_{\frac{2 t+1}{2}}\right\}$ if $\lambda_{\frac{2 t+1}{2}}<0$ for n odd. For each $\Lambda_{k} \in \mathbf{A}$ we define the associated set $\overline{\Gamma_{k}^{2}}, k=2, \overline{3^{2}}, \ldots, t$,
as in (3.2) and $\Gamma_{1}=\left\{-\lambda_{2 t}, \lambda_{2 t}\right\}$, which are realizable in particular by the symmetric nonnegative matrix $A_{k}, k=1,2, \ldots, t$, as in (3.3).

As in the proof of Theorem 1 we merge the sets Γ_{1} and Γ_{2} to obtain $\Delta_{2}=$ $\left\{-\lambda_{2 t}-S_{2}, \lambda_{2}, \lambda_{2 t-1}, \lambda_{2 t}\right\} \in \mathcal{S}_{4}$. Then a symmetric nonnegative matrix which realizes Δ_{2} is

$$
M_{4}=\left(\begin{array}{cc}
A_{1} & \rho_{2} v_{2} u_{2}^{T} \\
\rho_{2} u_{2} v_{2}^{T} & A_{2}
\end{array}\right)
$$

where $v_{2}^{T}=u_{2}^{T}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\rho_{2}=\sqrt{\left(\lambda_{2}+\lambda_{2 t}\right)\left(\lambda_{2}+\lambda_{2 t-1}\right)}$. Next we merge Δ_{2} with Γ_{3} to obtain

$$
\Delta_{3}=\left\{-\lambda_{2 t}-S_{2}-S_{3}, \lambda_{2}, \lambda_{3}, \lambda_{2 t-2}, \lambda_{2 t-1}, \lambda_{2 t}\right\} \in \mathcal{S}_{6}
$$

which, according to Lemma 1 , is realized by the symmetric nonnegative matrix

$$
M_{6}=\left(\begin{array}{cc}
M_{4} & \rho_{3} v_{3} u_{3}^{T} \\
\rho_{3} u_{3} v_{3}^{T} & A_{3}
\end{array}\right),
$$

where $M_{4} v_{3}=\left(-\lambda_{2 t}-S_{2}\right) v_{3},\left\|v_{3}\right\|=1$ and $A_{3} u_{3}=\left(-\lambda_{2 t-2}\right) u_{3},\left\|u_{3}\right\|=1$ and ρ_{3} must be such that

$$
C_{3}=\left(\begin{array}{cc}
-\lambda_{2 t}-S_{2} & \rho_{3} \\
\rho_{3} & -\lambda_{2 t-2}
\end{array}\right)
$$

has eigenvalues $-\lambda_{2 t}-S_{2}-S_{3}$ and λ_{3}. The process shows that, in the ($k-1$)-step, we may compute the matrix

$$
M_{2 k}=\left(\begin{array}{cc}
M_{2 k-2} & \rho_{k} v_{k} u_{k}^{T} \\
\rho_{k} u_{k} v_{k}^{T} & A_{k}
\end{array}\right), \quad k=2,3, \ldots, t
$$

where $M_{2 k-2}$ is the symmetric nonnegative matrix with spectrum Δ_{k-1}, v_{k} and u_{k} are unit eigenvectors of $M_{2 k-2}$ and A_{k}, respectively, corresponding to the eigenvalues $-\lambda_{2 t}-\sum_{j=2}^{k-1} S_{j}$ and $\lambda_{2 t-k+1}$, respectively, and ρ_{k} must be such that the matrix

$$
C_{k}=\left(\begin{array}{cc}
-\lambda_{2 t}-\sum_{j=2}^{k-1} S_{j} & \rho_{k} \\
\rho_{k} & -\lambda_{2 t-k+1}
\end{array}\right)
$$

has eigenvalues $-\lambda_{2 t}-\sum_{j=2}^{k} S_{j}$ and λ_{k}.

Now we compute symmetric nonnegative matrices with spectrum Λ for $n=4$ and $n=5$.

Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ satisfying the realizability criterion of Theorem 1. We have two cases:
i) $\lambda_{1} \geq-\lambda_{4}$ with $\lambda_{2}+\lambda_{3} \geq 0$. Then

$$
A=\frac{1}{2}\left(\begin{array}{cccc}
\lambda_{1}+\lambda_{4} & \lambda_{1}-\lambda_{4} & 0 & 0 \\
\lambda_{1}-\lambda_{4} & \lambda_{1}+\lambda_{4} & 0 & 0 \\
0 & 0 & \lambda_{2}+\lambda_{3} & \lambda_{2}-\lambda_{3} \\
0 & 0 & \lambda_{2}-\lambda_{3} & \lambda_{2}+\lambda_{3}
\end{array}\right)
$$

ii) $\lambda_{1} \geq-\lambda_{4}-\left(\lambda_{2}+\lambda_{3}\right)$. Then

$$
A=\frac{1}{2}\left(\begin{array}{cccc}
0 & -2 \lambda_{4} & \rho & \rho \\
-2 \lambda_{4} & 0 & \rho & \rho \\
\rho & \rho & 0 & -2 \lambda_{3} \\
\rho & \rho & -2 \lambda_{3} & 0
\end{array}\right),
$$

where $\rho=\sqrt{\lambda_{3} \lambda_{4}-\lambda_{1} \lambda_{2}}$.
Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\}$ satisfying the realizability criterion of Theorem 1. We have four cases:
i) $\lambda_{1} \geq-\lambda_{5}$ with $\lambda_{2}+\lambda_{4} \geq 0$ and $\lambda_{3} \geq 0$. Then

$$
A=\frac{1}{2}\left(\begin{array}{ccccc}
\lambda_{1}+\lambda_{5} & \lambda_{1}-\lambda_{5} & 0 & 0 & 0 \\
\lambda_{1}-\lambda_{5} & \lambda_{1}+\lambda_{5} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2}+\lambda_{4} & \lambda_{2}-\lambda_{4} & 0 \\
0 & 0 & \lambda_{2}-\lambda_{4} & \lambda_{2}+\lambda_{4} & 0 \\
0 & 0 & 0 & 0 & 2 \lambda_{3}
\end{array}\right) .
$$

ii) $\lambda_{1} \geq-\lambda_{5}-\left(\lambda_{2}+\lambda_{4}\right)$ with $\lambda_{3} \geq 0$. Then

$$
A=\frac{1}{2}\left(\begin{array}{ccccc}
0 & -2 \lambda_{5} & \rho & \rho & 0 \\
-2 \lambda_{5} & 0 & \rho & \rho & 0 \\
\rho & \rho & 0 & -2 \lambda_{4} & 0 \\
\rho & \rho & -2 \lambda_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \lambda_{3}
\end{array}\right),
$$

where $\rho=\sqrt{\lambda_{4} \lambda_{5}-\lambda_{1} \lambda_{2}}$.
iii) $\lambda_{1} \geq-\lambda_{5}-\lambda_{3}$ with $\lambda_{2}+\lambda_{4} \geq 0$. Then

$$
A=\frac{1}{2}\left(\begin{array}{ccccc}
0 & -2 \lambda_{5} & \sqrt{2} \rho & 0 & 0 \\
-2 \lambda_{5} & 0 & \sqrt{2} \rho & 0 & 0 \\
\sqrt{2} \rho & \sqrt{2} \rho & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2}+\lambda_{4} & \lambda_{2}-\lambda_{4} \\
0 & 0 & 0 & \lambda_{2}-\lambda_{4} & \lambda_{2}+\lambda_{4}
\end{array}\right),
$$

where $\rho=\sqrt{-\lambda_{1} \lambda_{3}}$.
iv) $\lambda_{1} \geq-\lambda_{5}-\left(\lambda_{2}+\lambda_{4}\right)-\lambda_{3}$. Then

$$
A=\frac{1}{2}\left(\right)
$$

where $v^{T}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ with $v_{1}=v_{2}=\frac{p}{\sqrt{2 p^{2}+2 q^{2}}}, v_{3}=v_{4}=\frac{q}{\sqrt{2 p^{2}+2 q^{2}}}$, $p=\mu_{1}+\lambda_{4}+\rho, q=\mu_{1}+\lambda_{5}+\rho, \mu_{1}=-\lambda_{5}-\left(\lambda_{2}+\lambda_{4}\right), \rho=\sqrt{\lambda_{4} \lambda_{5}-\lambda_{1} \lambda_{2}}$ and $\eta=\sqrt{-\lambda_{1} \lambda_{3}}$.

5. Examples

Example 1. Let $\Lambda=\{9,5,3,3,-5,-5,-5,-5\}$. We have the partition $\Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3} \cup \Lambda_{4}$, where $\Lambda_{1}=\{9,-5\}, \Lambda_{2}=\{3,-5\}, \Lambda_{3}=\{3,-5\}$ and $\Lambda_{4}=\{5,-5\}$. We define the associated sets $\Gamma_{1}=\{5,-5\}, \Gamma_{2}=\{5,-5\}$ and $\Gamma_{3}=\{5,-5\}$. Then we merge Γ_{1} with Γ_{2} to obtain

$$
A_{4}=\left(\begin{array}{llll}
0 & 5 & 1 & 1 \\
5 & 0 & 1 & 1 \\
1 & 1 & 0 & 5 \\
1 & 1 & 5 & 0
\end{array}\right)
$$

havig spectrum $\Delta_{2}=\{7,3,-5,-5\}$. Next we merge Δ_{2} with Γ_{3} and obtain

$$
A_{6}=\left(\begin{array}{llllll}
0 & 5 & 1 & 1 & 1 & 1 \\
5 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 5 & 1 & 1 \\
1 & 1 & 5 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 5 \\
1 & 1 & 1 & 1 & 5 & 0
\end{array}\right)
$$

with spectrum $\Delta_{3}=\{9,3,3,-5,-5,-5\}$. Finally we have

$$
A_{8}=\left(\begin{array}{llllllll}
0 & 5 & 1 & 1 & 1 & 1 & 0 & 0 \\
5 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 5 & 1 & 1 & 0 & 0 \\
1 & 1 & 5 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 5 & 0 & 0 \\
1 & 1 & 1 & 1 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 5 & 0
\end{array}\right)
$$

with spectrum $\Lambda \in \mathcal{S}_{8}$.

Example 2. Let $\Lambda=\{7,5,1,-3,-4,-6\}$. Observe that Λ does not satisfy Theorem 1. However we still may obtain a symmetrix nonnegative matrix realizing Λ : Consider the partition $\Lambda=\Lambda_{1} \cup \Lambda_{2}$, where $\Lambda_{1}=\{7,-6\}$ and $\Lambda_{2}=\{5,1,-3,-4\}$. Define $\Gamma_{1}=\{6,-6\}$ and $\Gamma_{2}=\{6,1,-3,-4\}$. Then

$$
A_{2}=\left(\begin{array}{cccc}
0 & 4 & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} \\
4 & 0 & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} \\
\frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & 0 & 3 \\
\frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & 3 & 0
\end{array}\right)
$$

realizes Γ_{2} while

$$
A_{1}\left(\begin{array}{ll}
0 & 6 \\
6 & 0
\end{array}\right) \text { realizes } \Gamma_{1}
$$

By applying Lemma 2 to Γ_{2} and Γ_{1} we obtain Λ and from Lemma 1 we may compute the realizing matrix

$$
A=\left(\begin{array}{cccccc}
0 & 4 & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & \sqrt{\frac{3}{20}} & \sqrt{\frac{3}{20}} \\
4 & 0 & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & \sqrt{\frac{3}{20}} & \sqrt{\frac{3}{20}} \\
\frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & 0 & 3 & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\
\frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} & 3 & 0 & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\
\sqrt{\frac{3}{20}} & \sqrt{\frac{3}{20}} & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 & 6 \\
\sqrt{\frac{3}{20}} & \sqrt{\frac{3}{20}} & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 6 & 0
\end{array}\right) .
$$

References

[1] A. Borobia, On the Nonnegative Eigenvalue Problem, Linear Algebra Appl. 223-224, pp. 131-140, (1995).
[2] A. Borobia, J. Moro, R. Soto, Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 393, pp. 73-89, (2004).
[3] A. Brauer, Limits for the characteristic roots of a matrix. IV: Aplications to stochastic matrices, Duke Math. J., 19, pp. 75-91, (1952).
[4] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl. 9, pp. 119-142, (1974).
[5] C. R. Johnson, T. J. Laffey, R. Loewy, The real and the symmetric nonnegative inverse eigenvalue problems are different, Proc. AMS 124, pp. 3647-3651, (1996).
[6] R. Kellogg, Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl. 4, pp. 191-204, (1971).
[7] T. J. Laffey, E. Meehan, A characterization of trace zero nonnegative 5x5 matrices, Linear Algebra Appl. pp. 302-303, pp. 295-302, (1999).
[8] R. Loewy, D. London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6, pp. 83-90, (1978).
[9] H. Perfect, Methods of constructing certain stochastic matrices, Duke Math. J. 20, pp. 395-404, (1953).
[10] N. Radwan, An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra Appl. 248, pp. 101-109, (1996).
[11] R. Reams, An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra 41, pp. 367-375, (1996).
[12] F. Salzmann, A note on eigenvalues of nonnegative matrices, Linear Algebra Appl. 5., pp. 329-338, (1972).
[13] R. Soto, Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl. 369, pp. 169-184, (2003).
[14] R. Soto, A. Borobia, J. Moro, On the comparison of some realizability criteria for the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 396, pp. 223-241, (2005).
[15] G. Soules, Constructing symmetric nonnegative matrices, Linear and Multilinear Algebra 13, pp. 241-251, (1983).
[16] H. R. Suleimanova, Stochastic matrices with real characteristic values, Dokl. Akad. Nauk SSSR 66, pp. 343-345, (1949).
[17] G. Wuwen, An inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl. 249, pp. 67-78, (1996).

Ricardo L. Soto

Departamento de Matemáticas
Universidad Católica del Norte
Casilla 1280
Antofagasta
Chile
e-mail : rsoto@ucn.cl

[^0]: *Supported by Fondecyt 1050026, Chile.

