1. Introduction.

The graph to considered will be in general simple and finite, graphs with a nonempty set of edges. For a graph $G, V(G)$ denote the set of vertices and $\mathrm{E}(\mathrm{G})$ denote the set of edges. The cardinality of $\mathrm{V}(\mathrm{G})$ is called order of G and the cardinality of $E(G)$ is called size of G. A (p, q) graph has order p and size q . Two vertices u and v are called neighbors if $\{u, v\}$ is an edge of G. For any vertex v of G, denote by Nv the set neighbors of v . To simplify the notation, and edge $\{\mathrm{x}, \mathrm{y}\}$ is written as xy (or yx). Other concepts used in this work and not defined explicitly can be found in the references [1], [2], [3], [5], [9], [12], [13].

2. Preliminaries

. Some essential concepts of this work are the following :

2.1. The Substitution [10], [11]

It assumes that G and K and two disjointed graphs by vertices. For a vertex v in $\mathrm{V}(\mathrm{G})$ and a function $\mathrm{s}: \mathrm{N}_{v} \rightarrow \mathrm{~V}(\mathrm{~K})$ it will be defined the substitution of the vertice v by the graph K , as the graph M , denoted by $G(v, s) K$, such that:
(1) $\mathrm{V}(\mathrm{M})=(\mathrm{V}(\mathrm{G}) \cup \mathrm{V}(\mathrm{K}))-\{\mathrm{v}\}$ and
(2) $\mathrm{E}(\mathrm{M})=\left(\mathrm{E}(\mathrm{G})-\left\{\mathrm{vx} / \mathrm{x} \in \mathrm{N}_{v}\right\}\right) \cup\left\{\mathrm{xs}(\mathrm{x}) / \mathrm{x} \in \mathrm{N}_{v}\right\}$.

The vertex v is said to be the substitution vertex by K in G under the function s and this function is called substitution function. Figure 1 shows an example of substitution.

FIGURE 1

Now let $\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}$ be the vertices of a graph G and $\mathrm{H}_{1}, \ldots, \mathrm{H}_{n}$ a sequence of graphs with no common vertices among themselves or with G. By $\mathrm{M}_{k}=\mathrm{M}_{k-1}\left(\mathrm{v}_{k}, \mathrm{~s}_{k}\right) \mathrm{H}_{k}$ it will be denoted the graph which is obtained by substitution of vertices of G by graphs $\mathrm{H}_{i}, 1 \leq i \leq \mathrm{k}$, where $\mathrm{M}_{0}=\mathrm{G}$. In other words, M_{1} denotes a graph obtained by substitution of only one vertex of G, M_{2} denotes a graph obtained by substitution of only one vertex of M_{1}, and so on. Note that every substitutes vertex must belong to $\mathrm{V}(\mathrm{G})$. Figure 2 shows an example of M_{6}.

FIGURE 2

It can be said that an edge of the substitution M_{p} is an edge internal [10] if it is denoted by $\mathrm{s}_{i}(\mathrm{x}) \mathrm{s}_{i}(\mathrm{y})$. The edge in M_{p} that is not edge internal will be nominated edge external [9]. Let G be a graph without isolated vertices. If each vertex v of G is substituted by a complete graph with $\operatorname{val}(\mathrm{v})$ vertices, through an injective function, then it will be said that the graph G has been expanded [9]. When each vertex of a given G graph is substituted for a copy [3] of G through injectives functions of substitution is obtained a special type of substitution which will be called autosubstitution and denoted by $G(G)$. If G is a cycle then $\mathrm{G}(\mathrm{G})$ will be called autocycle. Figure 3 shows an example of $G(G)$ for $G=C_{4}$.

FIGURE 3

2.2. Realizable graph [2], [3]:

A (p, q) graph G is said to be realizable on $\mathbf{R}^{\mathbf{3}}$ if it is possible to distinguish a collection of p distinct point of $\mathbf{R}^{\mathbf{3}}$ that correspond to the vertices of G and a collection of q curves, pairwise disjoint except possibly for endpoint, on $\mathbf{R}^{\mathbf{3}}$ that correspond to the edges of G such that if a curve λ corresponds to the edge $\mathrm{e}=\mathrm{uv}$, then only the endpoints of λ correspond to vertices of G , namely u and v .

2.3. Discrete dynamical systems [6], [7], [12].

A discrete dynamical system is any set X together with a mapping $f: \mathrm{X} \rightarrow \mathrm{X}$. In this work X is always a set of graph. In the literature [12], X must be some topological space such that f is continuous. An orbit of f in G is any set of the form $\left\{\mathrm{G}, f(\mathrm{G}), \ldots, f^{n}(\mathrm{G}), \ldots\right\}$. A graph G is an attractor point of f if there is some natural $n>0$ with $\mathrm{G}=f^{n}(\mathrm{G})$ and $\mathrm{G} \neq f^{t}(\mathrm{G})$ if $t<n$.

3. Attractors Points

. The class of all the simple and finite graphs will be written down by X [6] and an application X in X that takes a G graph in $\mathrm{G}(\mathrm{G})$ will be denoted by w. It is of noticing that each element of the orbit of w is obtained by substitution of each one of its vertices by G.

The realization of the graph G in $\mathbf{R}^{\mathbf{3}}$ will be denoted by $\mathrm{C}(\mathrm{G})$.
If $h: V(\mathrm{G}) \rightarrow \mathbf{R}^{\mathbf{3}}$ is a injective function defined by $h(v)=\tilde{v}$ and if $\mathrm{V}(\mathrm{G})=\left\{v_{1}, \ldots, v_{n}\right\}$, then $\mathrm{C}(\mathrm{G})=\underset{v_{i} v_{j} \in E(G)}{ } \tilde{v}_{i} \tilde{v}_{j}$, where $\tilde{v}_{i} \tilde{v}_{j}=$ $\left\{\tilde{v}_{i}-\lambda\left(\tilde{v}_{j}-\tilde{v}_{i}\right) / \lambda \in[0,1]\right\}$. If $\mathrm{E}(\mathrm{G})=\Phi$ and $V(\mathrm{G})=\left\{v_{1}, \ldots, v_{n}\right\}$, then $\mathrm{C}(\mathrm{G})=\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right\}$.

Lemma 3.1: $\mathrm{C}(\mathrm{G})$ is compact in $\mathbf{R}^{\mathbf{3}}$.

Proof :

(i) $\mathrm{C}(\mathrm{G})$ is bounded.

If $\mathrm{V}(\mathrm{G})=\left\{v_{1}, \ldots, v_{n}\right\}$, then $\mathrm{C}(\mathrm{G}) \underset{v_{i} v_{j} \in E(G)}{\bigcup}$. Let $\mathrm{p} \in \mathbf{R}^{\mathbf{3}}-\mathrm{C}(\mathrm{G})$ be, then $\mathrm{d}\left(\mathrm{p}, \tilde{v}_{i}\right)>0, i \in\{1, \ldots, n\}$, where d denotes the usual distance in \mathbf{R}^{3}. It is defined $r=2 v_{i} \in V(G) \max \mathrm{d}\left(\mathrm{p}, \tilde{v}_{i}\right)$ and consequently $\mathrm{C}(\mathrm{G})$ $\subset V_{r}(p)$.
(ii) $\mathrm{C}(\mathrm{G})$ is closed.

Let $\mathrm{p} \in \mathbf{R}^{\mathbf{3}}-\mathrm{C}(\mathrm{G})$ be, then it is defined $r \in \mathbf{R}^{+}$by $\mathrm{d}(\mathrm{p}, \mathrm{C}(\mathrm{G}))$ and consequently $V_{r}(p) \subset \mathbf{R}^{\mathbf{3}}-\mathrm{C}(\mathrm{G})$. Therefore $\mathrm{C}(\mathrm{G})$ is closed \bullet

Let A_{λ} be the set defined by $\left\{y \in \mathbf{R}^{\mathbf{3}} / \exists x \in A, d(x, y)<\lambda\right\}$ where $A \subset \mathbf{R}^{3}, \lambda \in \mathbf{R}^{+}$. Is obvious that $A_{\lambda}=\bigcup_{a \in A}$, where $V_{\lambda}(a)=\{$ $\left.x \in \mathbf{R}^{\mathbf{3}} / \mathbf{d}(\mathbf{x}, \mathbf{a})<\lambda\right\}$.

Let $A \subset \mathbf{R}^{\mathbf{3}}$ be a bounded set. The diameter of A, denoted by $\operatorname{diam}(A)$, is the real number $\max _{x, y \in A}$, i.e., $\operatorname{diam}(A)=x, y \in A m a x$ $d(x, y)$.

Moreover, if $A, B, C \subset \mathbf{R}^{3}$, then $. d(A, B) \leq d(A, C)+d(C, B)$.
From now on, by X it will be denoted the class of all the simple and finite graphs.

In the following proposition it will be constructed a distance in X.
Proposition 3.2: The function $\delta: X \times X \rightarrow \mathbf{R}$ defined by $\delta\left(G_{1}, G_{2}\right)=\inf \left\{\lambda \in \mathbf{R}^{+} / \mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right)\right)_{\lambda} \wedge \mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right)\right)_{\lambda}\right\}$, is a distance on X.

Proof: If $\mathrm{G}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3} \in X$, then
(i) Since $\delta(\mathrm{G}, \mathrm{G})=\inf \left\{\lambda \in \mathbf{R}^{+} / \mathbf{C}(\mathbf{G}) \subset(\mathbf{C}(\mathbf{G}))_{\lambda}\right\}$ and $\mathrm{C}(\mathrm{G})$ is compact in $\mathbf{R}^{\mathbf{3}}$, then $\delta(\mathrm{G}, \mathrm{G})=0$.
(ii) Suppose $\delta\left(G_{1}, G_{2}\right)>0$.

Since $\inf \left\{\lambda \in \mathbf{R}^{+} / \mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right)\right)_{\lambda} \wedge \mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right)\right)_{\lambda}\right\}>$ $\mathbf{0}$, then $G_{1} \neq G_{2}$.

Suppose . $G_{1} \neq G_{2}$
Since $\delta\left(G_{1}, G_{2}\right)=\inf \left\{\lambda \in \mathbf{R}^{+} / \mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right)\right)_{\lambda} \wedge \mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right) \subset\right.$ $\left.\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right)\right)_{\lambda}\right\}$, and $C\left(G_{1}\right) \subset\left(C\left(G_{1}\right)\right)_{\lambda}, C\left(G_{2}\right) \subset\left(C\left(G_{2}\right)\right)_{\lambda}$, then $\left(C\left(G_{1}\right) \cup C\left(G_{2}\right)\right) \subset\left(C\left(G_{1}\right)\right)_{\lambda} \wedge\left(C\left(G_{1}\right) \cup C\left(G_{2}\right)\right) \subset\left(C\left(G_{2}\right)\right)_{\lambda} \Rightarrow$ $\Rightarrow\left(C\left(G_{1}\right) \cup C\left(G_{2}\right)\right) \subset\left(\left(C\left(G_{1}\right)\right)_{\lambda} \cap\left(C\left(G_{2}\right)\right)_{\lambda}\right) \Rightarrow$ $\Rightarrow \inf \left\{\lambda \in \mathbf{R}^{+} / \mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right)\right)_{\lambda} \wedge \mathbf{C}\left(\mathbf{G}_{\mathbf{2}}\right) \subset\left(\mathbf{C}\left(\mathbf{G}_{\mathbf{1}}\right)\right)_{\lambda}\right\}>\mathbf{0} \Rightarrow$
(iii) By definition, $\delta\left(G_{1}, G_{2}\right)=\delta\left(G_{2}, G_{1}\right)$.
(iv) $\delta\left(G_{1}, G_{2}\right) \leq \delta\left(G_{1}, G_{3}\right)+\delta\left(G_{3}, G_{2}\right)$.
$\delta\left(G_{1}, G_{2}\right) \leq \delta\left(G_{1}, G_{2}\right)+\operatorname{diam}\left(C\left(G_{3}\right)\right) \leq \operatorname{diam}\left(C\left(G_{3}\right)\right)+\operatorname{diam}\left(C\left(G_{1}\right)\right)+$ $+d\left(C\left(G_{1}\right), C\left(G_{2}\right)\right)+\operatorname{diam}\left(C\left(G_{2}\right)\right) \leq \operatorname{diam}\left(C\left(G_{3}\right)\right)+\operatorname{diam}\left(C\left(G_{2}\right)\right)+$
$+d\left(C\left(G_{1}\right), C\left(G_{3}\right)\right)+d\left(C\left(G_{3}\right), C\left(G_{2}\right)\right)+\operatorname{diam}\left(C\left(G_{3}\right)\right)+\operatorname{diam}\left(C\left(G_{1}\right)\right) \leq$ $\leq \delta\left(G_{1}, G_{3}\right)+\delta\left(G_{3}, G_{2}\right) . \bullet$

Any important concepts are the following.
Neighborhood: A neighborhood of a graph G in X is the set $\{H \in X / \delta(H, G)<r\}, r \in \mathbf{R}^{+}$, and denoted by $V_{r}(G)$.
That is $V_{r}(G)=\{H \in X / \delta(H, G)<r\}$.
Open Set: A set $A \subset X$ is open if for each $G \in A$, exits $r \in \mathbf{R}^{+}$ such that $V_{r}(G) \subset A$.

Closed Set : A set $A \subset X$ is closed if $X-A$ is open.
Adherent Graph : A graph $G \in X$ is adherentgraph of set $A \subset X$ if for each $r \in \mathbf{R}^{+}, V_{r}(G) \cap A \neq \phi$. The set $\{G \in X / G$ is adherent graph an A\} is denoted by \bar{A}.

Remark 3.3: $\bar{A}=\underset{\substack{F \text { cerrado } \\ A \subset F}}{ } \mathrm{~F}$
Theorem 3.4: (X, δ) is a metric complete space.
Proof: By proposition $3.2(X, \delta)$ is a metric space. Let $\left\{G_{i}\right\}_{i \in \mathbf{N}}$ be a sequence in X.
(i) Suppose that $\left\{G_{i}\right\}_{i \in \mathbf{N}}$ is a convergent sequence on graph G.
$\forall r \in \mathbf{R}^{+}, \exists \mathbf{n}_{\mathbf{r}} \in \mathbf{N}: \forall \mathbf{n} \in \mathbf{N}, n>n_{r}: G_{n} \in V_{\frac{r}{2}}(G) \Rightarrow$
$\Rightarrow \forall n, m \in \mathbf{N}, n, m>n_{r}: \delta\left(G_{n}, G_{m}\right) \leq \delta\left(G_{n}, G\right)+\delta\left(G, G_{m}\right)<$ $\frac{r}{2}+\frac{r}{2}=r \Rightarrow$
$\Rightarrow\left\{G_{i}\right\}_{i \in \mathbf{N}}$ is a Cauchy sequence.
(ii) Suppose that $\left\{G_{i}\right\}_{i \in \mathbf{N}}$ is a Cauchy sequence, i.e.,
$\forall r \in \mathbf{R}^{+}, \exists \mathbf{n}_{\mathbf{r}} \in \mathbf{N}: \forall \mathbf{n}, \mathbf{m} \in \mathbf{N}, n, m>n_{r}: \delta\left(G_{n}, G_{m}\right)<r$.
For each $n \in \mathbf{N}$, let $H_{n}=\overline{\bigcup_{p \in N} C\left(G_{n+p}\right)}$ be. According to lemma 3.1 each $C\left(G_{n+p}\right)$ is compact, then $H_{n}=\bigcup_{p \in N} C\left(G_{n+p}\right)$. As
$H_{n}=C\left(G_{n}\right) \cup H_{n+1}$, then $H_{n+1} \subset H_{n}$. Let G be a graph so that $C(G)=\bigcap_{n \in \mathbf{N}} H_{n}$. Since $\left\{H_{i}\right\}_{i \in \mathbf{N}}$ is decreasing, therefore $C(G) \neq \phi$ and accordingly $\lim _{n \longrightarrow \infty} C\left(G_{n}\right)=C(G)$. For him previously affirmed, $\forall r \in \mathbf{R}^{+}, \exists \mathbf{n}_{\mathbf{r}} \in \mathbf{N}: \forall \mathbf{n} \in \mathbf{N}, n>n_{r}: \delta\left(G_{n}, G\right)<r$., and therefore $\left\{G_{i}\right\}_{i \in \mathbf{N}}$ is a convergent sequence on graph G•

Now, the following lemma is fundamental
Lemma 3.5: If w is an application of X in X, defined by $w(G)=$ $G(G)$, then w is a contraction in X.

Proof: Choose $s \in\left[0,1\left[\right.\right.$ such that for each pair $G_{1}, G_{2} \in X$,
$\delta\left(w\left(G_{1}\right), w\left(G_{2}\right)\right) \leq s \delta\left(G_{1}, G_{2}\right)$. This s number could be defined by means of an appropriate election of the metric in the realization of G and $w(G)$ in $\mathbf{R}^{\mathbf{3}}$.

In fact $s=\underset{\substack{U, V \in X \\ U \neq V}}{\operatorname{Sup}} \frac{\delta(w(U), w(V))}{\delta(U, V)} \bullet$
The existence of an attractor point for w is assured by the following theorem whose demonstration could be found in [8].

Theorem 3.6: If M is a metric complete space and $f: M \rightarrow M$ is a contraction, then $x_{f}=n \rightarrow \infty \lim f^{n}(x)$ it exist and it is independent of the election of x in M. Also, x_{f} is the only fixed point of f.

Theorem 3.7: If $G \in X$, then the orbit $G \rightarrow w(G) \rightarrow \ldots \rightarrow$ $w^{k}(G) \rightarrow$...has a single attractor point G_{w} for w.

Proof: Applying lemma 3.5 and theorem 3.6.
3. The algorithm[4]. Observe that the described previously is of deterministic character, due to this fact an deterministic algorithm in order to calculate the attractor point of w . An analysis shows that if G is a graph with p vertices then $w(G)$ has p^{2} vertices and, in general, $w^{k}(G)$ has p^{k} vertices. The algorithm to be used generates the G graph, after $w(G)$ and so on. Figure 4 shows an example of an orbit of w for $G=K_{5}$.

FIGURE 4

References

[1] M. BARNSLEY, Fractal Everywhere, Academic Press, (1988).
[2] A. BRONDSTED, An Introduction to Convex Polytopes, Springer Verlag, New York, Heidelberg, Berlin, (1983).
[3] G. CHARTRAND, LESNIAIK, L., Graphs and Digraphs, Wadsworth and Brooks/Cole Advanced Books and Software Pacific Grove, C. A., (1996).
[4] G. CHARTRAND AND O. OELLERMANN, Applied and Algorithmic Graph Theory, McGraw-Hill., Inc., (1993).
[5] H. COXETER, Regular Polytopes, Third Edition, Dover Publication, Inc, (1973).
[6] R. DEVANEY, Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, (1989).
[7] R. HOLMGREN, A First Course in Discrete Dynamical Systems, Springer-Verlag, (1994).
[8] A.N. KOLMOGOROV \& S.V.FOMIN, Introductory Real Analysis, Dover Publications, INC., New York, (1975).
[9] E. MONTENEGRO, R. SALAZAR, A result about the incidents edges in the graphs M_{k}, Discrete Mathematics, 122, pp. 277-280, (1993).
[10] E. MONTENEGRO, D. POWERS, S. RUIZ, R. SALAZAR, Spectra of related graphs and Self Reproducing Polyhedra, Proyecciones, $11, \mathrm{~N}^{o} 1$, pp. 01-09, (1992)
[11] E. MONTENEGRO, D. POWERS, S. RUIZ, R. SALAZAR, $A u-$ tomorphism Group and hamiltonian properties preserved by Substitution, Scientia, Serie A Math. Sciences 4, pp. 57-67, (1993).
[12] E. PRISNER, Graph Dynamics, version 2B, Universität Hamburg, Hamburg, F.R. Germany, (1994).
[13] R. ROCKAFELLAR, Convex Analysis, Princeton University Press, (1970).

Received: May, 2000

Eduardo Montenegro

Instituto de Matemáticas
Universidad Católica de Valparaíso
Blanco Viel N 596
Cerro Baron
Valparaíso
Chile
e-mail : emontenv@ucv.cl
and

Eduardo Cabrera

Facultad de Ciencias Naturales y Exactas
Universidad de Playa Ancha
Casilla 34-V
Valparaíso
Chile
e-mail : emontene@upa.cl

