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Abstract

We consider the Banach-Mackey property for pairs of vec-
tor spaces E and E′ which are in duality. Let A be an algebra
of sets and assume that P is an additive map from A into
the projection operators on E. We define a continuous gliding
hump property for the map P and show that pairs with this
gliding hump property and another measure theoretic property
are Banach-Mackey pairs,i.e., weakly bounded subsets of E are
strongly bounded. Examples of vector valued function spaces,
such as the space of Pettis integrable functions, which satisfy
these conditions are given.
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1. INTRODUCTION

H. Lebesgue introduced the gliding hump technique of proof to estab-
lish several uniform boundedness results for concrete function spaces
such as L[0,1] ([L]). Subsequently, Schur and Hellinger/Toeplitz also
used the gliding hump method to establish similar uniform bound-
edness principles for concrete function spaces ([Sc],[HT]). The early
proofs of abstact uniform boundedness principles by Banach, Hahn
and Hilldebrandt all employed gliding techniques ([B],[Ha],[Hi]). Ab-
sract gliding hump assumptions have been used to treat a number
of topics in sequence spaces;for example, Noll used a ”strong gliding
hump” property to establish the weak sequential completeness of the
beta dual of a sequence space ([N] ; see [BF] for a list of various gliding
hump properties for sequence spaces). In this paper we introduce a
gliding hump assumption involving multipliers from a scalar sequence
space which is particularly useful in establishing uniform boundedness
results for a vector-valued sequence space and its beta dual; in par-
ticular, our results establish Banach-Mackey properties for sequence
spaces.

2. DEFINITIONS AND EXAMPLES

We begin with the notations and assumptions which will be used.
Let X be a Hausdorff locally convex space and let E be a vector
space of X-valued sequences containing c00(X), the space of all X-
valued sequences which are eventually 0. We assume that E has a
Hausdorff locally convex topology under which E is a K-space, i.e., the
coordinate maps x = {xk} → xk from E into X are continuous
for every k. An interval in N is a set of the form [m,n] = {k ∈
N : m ≤ k ≤ n}, where m ≤ n; a sequence of intervals {Ik} is
increasing if max Ik < min Ik+1 for every k. If I is an interval in N
the characteristic function of I is denoted by χI , and if x = {xk}
is an X-valued sequence, χI x denotes the coordinatewise product of
χI and x.

Let λ be a vector space of scalar valued sequences which contains
c00 the space of sequences which are eventually 0. The β-dual of λ, λβ,
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is defined to be {t = {tk} :
∑

tksk converges for every s = {sk} ∈ λ}.
If s ∈ λ and t ∈ λβ , we set t · s =

∑
tksk ; λ and λβ are in duality

with respect to the bilinear pairing (s, t) → s · t.

Definition 1. E has the strong λ gliding hump property (strong
λ-GHP) if whenever {Ik} is an increasing sequence of intervals and
{xk} is a bounded sequence in E, then for every t = {tk} ∈ λ the
coordinate sum of the series

∑
tkχIk

xk belongs to E.

Definition 2. E has the weak λ gliding hump property (weak
λ-GHP) if whenever {Ik} is an increasing sequence of intervals and
{xk} is a bounded sequence in E, there is a subsequence {nk} such
that the coordinate sum

∑
tkχInk

xk belongs to E for every t ∈ λ.
We refer to the elements of λ in Definitions 1 and 2 as multipliers

since their coordinates multiply the blocks {χIk
} determined by {Ik}

and {xk}. The weak λ − GHP is like the strong gliding humps
property introduced by Noll ([N]) where the multipliers consist only
of the constant sequence {1}. After giving examples of spaces with
λ-GHP we will make remarks comparing λ-GHP with other gliding
hump properties.

We proceed to give an extensive list of examples of spaces with
λ-GHP. The reader may want to skip ahead to section 3 where the
main results are established and then refer back to the examples. For
our first example we need a definition.

Definition 3. E satisfies the boundedness property (B) if for every
increasing sequence of intervals {Ik} and every bounded set A ⊂ E,
the set {χIk

x : k ∈ N,x ∈ A} is bounded in E.
For example, if I is the family of all intervals in N and the maps

χI : E → E, x → χIx, I ∈ I are equicontinuous, then (B) holds. This
is the case if p(χIx) ≤ p(x) holds for every I ∈ I, § ∈ E and continuous
seminorm p on E.

Proposition 4. If E is a locally complete space with property
(B), then E has strong l1 −GHP .

Proof: Let {Ik} be an increasing sequence of intervals and {xk} ⊂
E be bounded. By (B) {χIk

xk : k} is bounded so if t = {tk} ∈ l1,
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the series
∑∞

k=1 tkχIk
xk is absolutely convergent in E and, therefore,

converges to an element x ∈ E by local completeness. Since X is a
K − space, x is also the coordinate sum of the series.

Proposition 4 gives a large supply of spaces with l1 − GHP . We
also have

Example 5. l∞ and c0 have strong c0 − GHP ; lp has strong
lp −GHP for 0 < p ≤ ∞.

We now give examples of non-complete scalar sequence spaces with
weak lp −GHP .

Example 6. Let 1 ≤ p < ∞. Let P be the power set of N and let
µ : P → [0,∞) be a finitely additive set function with µ({j}) > 0 for
every j. Put lp(µ) = Lp(µ), the space of all pth power µ-integrable
functions with the norm ‖f‖p = (

∫
N | f |p dµ)1/p [ see [RR] for details

on the integration with repect to finitely additive set functions; the
assumption µ({j}) > 0 for every j makes lp(µ) a K−space]. We show
that lp(µ) has weak lp−GHP . Let {Ik} be an increasing sequence and
{fk} ⊂ lp(µ) be bounded with ‖fk‖p ≤ 1. By Drewnowski’s Lemma
([Dr],[Sw2]2.2.3) , there is a subsequence {nk} such that µ is countably
additive on the σ-algebra generated by {Ink

}. Suppose that t ∈ lp.
Put f =

∑∞
k=1 tkχInk

fnk
[coordinatewise]. We claim that f ∈ lp(µ) and

the series converges to f in lp(µ) by using Theorem 4.6.10 of [RR]. Put
sn =

∑n
k=1 tkχInk

fnk
and note that sn → f µ-hazily [µ-measure] since

if ε > 0,

µ({j :| sn(j)− f(j) |≥ ε}) ≤ µ(∪∞j=n+1Inj
) =

∞∑

j=n+1

µ(Inj
) → 0

by countable additivity. Next, {sn} is Cauchy in lp(µ) since

‖sn − sm‖p
p = ‖

n∑

j=m

tjχInj
fnj
‖p

p ≤
n∑

j=m

| tj |p→ 0.

It follows that {∫ | fnj
|p dµ : j} is uniformly µ-continuous. The

claim is thus justified, and it follows that lp(µ) has weak lp −GHP .
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Problem. Does lp(µ) have strong lp?

We next give examples of vector-valued sequence spaces with λ−
GHP . Let X be a family of semi-norms which generate the topology
of X . Let µ be a normal (scalar) K-space whose topology is generated
by the family of semi-norms M. If t = {tk} ∈ µ , we set | t |= {| tk |}.
We make the following assumptions on µ:

(*) If A ⊂ µ is bounded, then | A |= {| t |: t ∈ A} is bounded in
µ.

(**) If s, t ∈ µ with | s |≤| t | and if q ∈M, then q(s) ≤ q(t).

These assumptions are satisfied by many of the classical sequence
spaces.

We define µ{X} to be the space of all X − valued sequences x =
{xk} such that {p(xk)} ∈ µ for every p ∈ X . Since µ is normal,
µ{X} is a vector space. We assume that µ{X} has the locally convex
topology generated by the semi-norms

(1) πq,p({xk}) = q({p(xk)}), p ∈ X ,q ∈M.

Spaces of this type were considered in [FP] and [F].
The spaces lp{X} and c0{X} are the usual spaces of pth power

convergent and null sequences, respectively. As in Example 5 it is
easily seen that l∞{X} and c0{X} have strong c0 −GHP and lp{X}
has strong lp −GHP . More generally. we have

Proposition 7. If µ has strong λ−GHP , then µ{X} has strong
λ−GHP .

Proof: Let {Ik} be an increasing sequence of intervals and {xk} ⊂
µ{X} be bounded. Let t ∈ λ and put x =

∑∞
k=1 tkχIk

xk {coordinatewise}
. Let p ∈ X and note p(x(·)) =

∑∞
k=1 | tk | χIk

p(xk(·)),where x(·) is
the function j → xj. Now {{p(xk

j )}∞j=1 : k} is bounded in µ by the
definition in (1). By strong λ−GHP , {p(xj)} ∈ µ ,i.e., x ∈ µ{X}.

Proposition 8. If µ has weak λ − GHP and X is normed, then
µ{X} has weak λ−GHP .

Proof: Continue the notation from Proposition 7 and let ‖ ‖
be the norm on X. For every k {‖xk

j‖}∞j=1 ∈ µ and {{‖xk
j‖}j : k}
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is bounded in µ so by weak λ − GHP there is a subsequence {nk}
such that

∑∞
k=1 tkχInk

‖xnk(·)‖ = s ∈ µ for every t ∈ λ. Therefore,
x =

∑∞
k=1 tkχInk

xnk ∈ µ{X}.
Propositions 7 and 8 give a large supply of spaces with λ−GHP

many of which are not sequentially complete [ e.g., lp{X}or c0{X}].
We now give other examples of (non-monotone) vector-valued se-

quence spaces.

Example 9. Let CS(X) be the space of all X-valued sequences
{xk} such that the series

∑
xk is Cauchy in X. If X is the scalar field,

CS(X) is the space cs of convergent series. We define a topology on
CS(X) induced by the semi-norms p′({xk}) = sup{p(

∑
j∈I xj) : I ∈

I}, p ∈ X .
We claim that CS(X) has strong l1 − GHP . Suppose {Ik} is

increasing and {xk} ⊂ CS(X) is bounded. If t ∈ l1, put x =∑∞
k=1 tkχIk

xk [coordinatewise]. Let ε > 0, p ∈ X and set M =
sup{p(

∑
j∈I xk

j ) : I ∈ I, ‖}. Pick N such that
∑∞

k=N | tk |< ε.
Suppose I ∈ I and min I > N . Then

p(
∑

j∈I

xj) ≤
∞∑

k=N

| tk | M ≤ Mε

so x ∈ CS(X).

Example 10. Let BS(X) be all X-valued sequences {xk} such
that the partial sums {∑n

k=1 xk} are bounded. If X is the scalar field,
BS(X) is the space of bounded series bs. As above define a topology
on BS(X) by the semi-norms p′({xk}) = sup{p(

∑
j∈I xj : I ∈ I},

p ∈ X . It is easily checked that BS(X) has strong l1 −GHP .

Example 11. Let BV (X) be all X−valued sequences {xk} such
that the series

∑∞
i=1(xi+1 − xi) is absolutely convergent in X, i.e.,

{xi+1 − xi} ∈ l1{X}. If X is the scalar field BV (X) is the space bv
of sequences of bounded variation. If p ∈ X , we define a semi-norm
p′({xk}) =

∑∞
i=1 p(xi+1−xi)+ lim p(xi) and topologize BV (X) by the

semi-norms {p′ : p ∈ X}.
We show that BV (X) has strong l1 − GHP . First note that if

x ∈ BV (X), then sup{p(xi) : i} ≤ p′(x) for p ∈ X [for n > m, xm =
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∑n
k=m(xk − xk+1) + xn+1], so if I ∈ I, p′(χIx) ≤ p′(x) + 2 supi p(xi) ≤

3p′(x). If {Ik} is increasing, {xk} ⊂ BV (X) is bounded, t ∈ l1 and
we set x =

∑∞
k=1 tkχIk

xk, we have
∑∞

k=1 p(xk+1 − xk) ≤ ∑∞
k=1 | tk |

3p′(xk) < ∞ so x ∈ BV (X).

As noted earlier the weak λ − GHP resembles the strong gliding
hump property introduced by Noll where the mutipliers consist of the
single constant sequence {1} ([N]). A weaker gliding hump property is
the zero−GHP ; E has zero−GHP if xk → 0 in E and {Ik} increasing
implies there exists a subsequence {nk} such that x =

∑∞
k=1 χInk

xnk ∈
E ([Sw3] 12.5). We give an example of a space with l1 − GHP but
without zero−GHP .

Example 12. Let E be l2 with the weak topology. Since E
is sequentially complete, E has strong l1 − GHP by Proposition 4.
However, E fails to have zero−GHP [consider {k} and {ek}].

Problem. Does zero−GHP imply l1 −GHP?

3. MAIN RESULTS

We now prove several uniform boundedness results for spaces with
weak λ − GHP. The (scalar) β − dual of E is defined to be Eβ =
{{yk} : yk ∈ X ′,

∑∞
k=1〈yk, xk〉 converges for every x = {xk} ∈ E}.

If x = {xk} ∈ E and y = {yk} ∈ Eβ , we write y · x =
∑∞

k=1〈yk, xk〉;
E and Eβ are then in duality with respect to the bilinear pairing
(x, y) → y · x.

If Z and Z ′ are two vector spaces in duality, we denote the weak
(strong) topology of Z with resect to this duality by σ(Z,Z ′)(β(Z, Z ′)).
Recall that the pair Z, Z ′ is a Banach-Mackey pair if σ(Z, Z ′) bounded
sets in Z are β(Z,Z ′) bounded, and X is a Banach-Mackey space if
X, X ′ is a Banach-Mackey pair ([Wi] 10.4).

We begin with a basic lemma. If A ⊂ E and B ⊂ Eβ, we write
| B · A |= sup{| y · x |: y ∈ B, x ∈ A}.

Lemma 1. Let X be a Banach-Mackey space. Suppose A ⊂ E
is coordinatewise bounded and B ⊂ Eβ has coordinates which are
σ(X

′
, X) bounded. If | B · A |= ∞, then there exists an increasing
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sequence of intervals {Ik}, {xk} ⊂ A and {yk} ⊂ B such that | yk ·
χIk

xk |> k2.

Proof: There exist yk ∈ B, xk ∈ A such that | yk · xk |> k2 +
1. Set k1 = 1. There exists n1 such that | ∑n1

j=1〈yk1
j , xk1

j 〉 |> k2
1 +

1. For every j {xk
j : k} is bounded in X by hypothesis and {yk

j :
k} is σ(X ′, X) bounded since B has σ(X ′, X) bounded coordinates.
Since X is Banach-Mackey, {〈yk

j , x
k
j 〉 : k} is bounded for every j so

limk
1
k
〈yk

j , x
k
j 〉 = 0. Hence, there exists k2 > k1 such that

∑n1
j=1 |

〈yk2
j , xk2

j 〉 |< 1. Then | ∑∞
j=n1+1〈yk2

j , xk2
j 〉 |> k2

2. Pick n2 > n1 such that

| ∑n2
j=n1+1〈yk2

j , xk2
j 〉 |> k2

2 and set I2 = [n1+1, n2] so | yk2 ·χIk2
xk2 |> k2

2.
Now just continue this construction and relabel.

We now establish our first uniform boundedness result for E and
its β-dual. In what follows ek is the canonical vector with a 1 in the
kth coordinate and 0 in the other coordinates.

Theorem 2. Let X be a Banach-Mackey space and suppose that
E has weak λ−GHP . Assume

(2) {ek : k} is β(λ, λβ) bounded in λ.

If A ⊂ E is bounded and B ⊂ Eβ is σ(Eβ, E) bounded, then
| B · A |< ∞.

Proof: If the conclusion fails, Lemma 1 applies. Let the notation
be as in Lemma 1 and let {nj} be the subsequence in the definition
of the weak λ − GHP . Define a linear operator T : λ → E by Tt =∑∞

j=1 tjχInj
xnj [coordinatewise sum].

We claim that T is σ(λ, λβ) − σ(E,Eβ) continuous. For this let
t ∈ λ, y ∈ Eβ. Then y · Tt =

∑∞
j=1 tj(y · χInj

xnj) and since this series

converges for every t ∈ λ, {y · χInj
xnj} belongs to λβ and y · Tt =

{y ·χInj
xnj}·t which implies that T is σ(λ, λβ)−σ(E, Eβ) continuous.

Hence, T is also β(λ, λβ) − β(E, Eβ) continuous ([Wi] 11.2.6,[Sw1]
26.15). Thus, by hypothesis, {Tek} = {χInk

xnk} is β(E,Eβ) bounded.
But this contradicts the conclusion of Lemma 1.
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A similar uniform boundedness result for spaces with zero−GHP
is given in [Sw3] 12.5.7.

Corollary 3. Under the hypothesis of Theorem 2 if E ′ ⊂ Eβ ,
then E is a Banach-Mackey space.

We have a general criterion for the hypothesis in Corollary 3 to
hold. If z ∈ X, we define ek ⊗ z to be the sequence with z in the
kth coordinate and 0 in the other coordinates. We say that E is an
AK-space if the series

∑∞
k=1 ek ⊗ xk converges to x = {xk} ∈ E in the

topology of E for all x.

Proposition 4. Assume that the map z → ek ⊗ z from X into E
is continuous for every k. If E is an AK-space, then E ′ ⊂ Eβ.

Proof: Let f ∈ E ′. For every k define yk : X → R by 〈yk, z〉 =〈
f, ek ⊗ z

〉
. Then yk ∈ X ′ by hypothesis, and if x ∈ E, 〈f, x〉 =

〈f,
∑∞

k=1 ek ⊗ z〉 =
∑∞

k=1〈yk, xk〉 so y ∈ Eβ and 〈f, x〉 = y · x.

Example 5. CS(X) is an AK-space so it follows from Proposition
4, Corollary 3 and Example 2.9 that CS(X) is a Banach-Mackey space
when X is a Banach-Mackey space.

For the vector-valued sequence spaces µ{X}, we have

Example 6. It is easily checked that µ{X} is an AK-space when
µ is an AK-space. If

(3) X is a Banach-Mackey space and either µhas strong
λ−GHP or µ has weak λ−GHP and X is normed,

(2) holds and µ is anAK-space, then µ{X} is a Banach-Mackey space
[Proposition 4, Corollary 3 and Propositions 2.7 or 2.8].
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In particular, c0{X} is a Banach-Mackey space when X is a Banach-
Mackey space; this was established by Mendoza ([M]). It also follows
that lp{X} is a Banach-Mackey space for 1 ≤ p < ∞; Fourie has given
a general criterion for spaces of the type µ{X} to be Banach-Mackey
spaces ([F] 3.7) but his result does not cover l1{X}.

We also have a general uniform boundedness result for the spaces
µ{X} and their β-duals.

Corollary 7. Assume (3). If A ⊂ µ{X} is bounded and B ⊂
µ{X}β is σ(µ{X}β, µ{X}) bounded, then | B · A |< ∞.

We consider conditions which guarantee that E,Eβ form a Banach-
Mackey pair and then consider specific examples. From Theorem 2,
we obtain

Corollary 8. Assume that X is a Banach-Mackey space, E has
weak λ − GHP and (2) holds. If E is such that σ(E, Eβ) bounded
sets are bounded in the topology of E, then E, Eβ is a Banach-Mackey
pair.

Example 9. The space l∞{X} satisfies the boundedness crite-
rion in Corollary 8. For suppose A ⊂ l∞{X} is σ(l∞{X}, l∞{X}β)
bounded. For t ∈ l1, x′ ∈ X ′ define t ⊗ x′ ∈ l∞{X}β by t ⊗ x′ ·
x =

∑∞
k=1 tk〈x′, xk〉. Then sup{|t⊗ x′ · x| : x ∈ A} < ∞. Thus,

{{〈x′, xk〉 : x ∈ A, k} ⊂ l∞ is σ(l∞, l1) bounded and, therefore,
norm bounded in l∞. Hence, sup{| 〈x′, xk〉 |: x ∈ A, k} < ∞ and
{xk : x ∈ A, k} is bounded in X or A is bounded in l∞{X}.From
Corollary 8 and Proposition 7, it follows that l∞{X}, l∞{X}β is a
Banach-Mackey pair when X is a Banach-Mackey space [the β-dual
of l∞{X} is described in [GKR] 2.6].

Similarly, c0{X}, c0{X}β is a Banach-Mackey pair.

When E is a monotone space [or more generally when E has
the signed weak GHP] and X ′ is weak∗ sequentially complete, then
(Eβ, σ(Eβ, E)) is sequentially complete so E, Eβ form a Banach-Mackey
pair ([Sw3] 12.4.1,[Wi] 10.4). This result applies to l∞{X} and c0{X}
when X ′ is weak∗ sequentially complete; however, our assumption on
X being a Banach-Mackey space is weaker.
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We show that the (non-monotone) space BS(X) satisfies the bound-
edness criterion of Corollary 8. For this we require a description of the
β-dual of BS(X). Let X ′

b be the dual of X equipped with the strong
topology and let BV0(X) be the subspace of BV (X) consisting of the
null sequences.

Proposition 10. BS(X)β = BV0(X
′
b).

Proof: Let y ∈ BS(X)β. To show that yk → 0 strongly, it suffices
to show that 〈yk, xk〉 → 0 for every bounded sequence {xk} ⊂ X. If
x0 = 0, then {xk − xk−1} ∈ BS(X) so

∑∞
k=1〈yk, xk − xk−1〉 converges

and we have that limk〈yk, xk − xk−1〉 = 0 for every bounded sequence
{xk}. This implies that limk〈yk, xk〉 = 0 for every bounded sequence
[Define a bounded sequence {zj} by 0, x1, 0, x3, 0...; then the sequence
{〈yj, zj+1−zj〉} contains the sequence {〈y2j+1, x2j+1〉} as a subsequence
so limj〈y2j+1, x2j+1〉 = 0. Similarly, limj〈y2j, x2j〉 = 0 so limj〈yj, xj〉 =
0.]. Thus, y ∈ c0{X ′

b}.
Put wk = xk+1−xk so {wk} ∈ BS(X) and

∑∞
k=1〈yk, wk〉 converges.

Now

(4)
n∑

i=1

〈yi, wi〉 =
n∑

i=1

〈yi, xi+1 − xi〉 =
n−1∑

i=1

〈yi − yi+1, xi〉 − 〈yn, xn〉.

By the above 〈yn, xn〉 → 0 so
∑∞

i=1〈yi−yi+1, xi〉 converges for every
bounded {xk} by (4). Hence,

∑∞
i=1(yi− yi+1) is absolutely convergent

in X ′
b, i.e.,y ∈ BV0(X

′
b).

Next, let y ∈ BV0(X
′
b) and x ∈ BS(X). {si =

∑i
j=1 xj} is bounded

so
∑∞

i=1〈yi+1 − yi, si〉 converges absolutely. Now

(5)
n∑

i=1

〈yi, xi〉 =
n−1∑

i=1

〈yi − yi+1, si〉+ 〈yn, sn〉.

〈yn, sn〉 → 0 since yn → 0 strongly so (5) implies that
∑∞

i=1〈yi, xi〉
coverges. That is, y ∈ BS(X).

Proposition 11. If A ⊂ BS(X) is σ(BS(X), BS(X)β) bounded,
then A is bounded in BS(X).
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Proof: For t ∈ bv0 and x′ ∈ X ′ define tx′ ∈ BV0(X
′
b) by (tx′)k =

tkx
′. If x ∈ A,

(6) tx′ · x =
∞∑

j=1

tj〈x′, xj〉.

Since {〈x′, xj〉} ∈ bs, (6) implies {{〈x′, xj〉} : x ∈ A} is σ(bs, bvo)
bounded and, therefore, bounded in bs ([KG] p.69). Therefore,
{∑n

j=1〈x′, xj〉 : x ∈ A, n} is bounded. Hence, {∑n
j=1 xj : x ∈ A, n}

is σ(X, X ′) bounded and, therefore, bounded in X. That is, A is
bounded in BS(X).

From Corollary 8 and Example 10, we have

Example 12. If X is a Banach-Mackey space, then BS(X), BS(X)β

is a Banach-Mackey pair.
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