Proyecciones Vol. 20, N^o 1, pp. 53-63, May 2001. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172001000100004

A NONRESONANCE BETWEEN NON-CONSECUTIVE EIGENVALUES OF SEMILINEAR ELLIPTIC EQUATIONS : VARIATIONAL METHODS

M. MOUSSAOUI and M. MOUSSAOUI University Mohamed I - Oujda, Morocco

Abstract

We study the solvability of the problem

 $-\Delta u = f(x, u) + h \quad in \ \Omega \ ; \ u = 0 \quad on \ \partial \Omega$

when the nonlinearity f is assumed to lie asymptotically between two non- consecutive eigenvalues of $-\Delta$. We show that this problem is nonresonant.

Key words : Eigenvalue, resonance, nonresonance, variational method.

1. Introduction

In this paper, we will examine the existence of a solution of the problem:

(1.1)where
$$\begin{cases} -\Delta u = f(x,u) + h & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

 Ω is a smooth bounded domain of ^N, $N \geq 2$, Δ denotes the laplacian $\Delta u = div(\nabla u), f : \Omega \times \rightarrow$ is assumed to be a Carathéodory function such that

$$(f_0)$$
 and $m_R(x) = \sup_{|s| \le R} |f(x,s)| \in L^2(\Omega)$ for each $R > 0$

 $\mathbf{h} \in L^2(\Omega).$

We are interested in the conditions to be imposed on f and on the primitive F, $F(x, s) = \int_0^s f(x, t) dt$ in order to have the nonresonance i.e. the solvability of (1.1) for every h in $L^2(\Omega)$.

First we introduce some notations, the inequality

 $\alpha(x) \leq \beta(x)$ means that $\alpha(x) \leq \beta(x)$ for a.e. $x \in \Omega$ with a strict inequality $\alpha(x) < \beta(x)$ holding on subset of Ω of positive measure. $\lambda_i < \lambda_{i+1} < \lambda_{i+2}$ are the consecutive eigenvalues of the problem

$$-\Delta u = \lambda u \quad \text{in } \Omega \, ; \, u = 0 \quad \text{on } \partial \Omega$$

 $E(\lambda_i)$ is the subspace of $H_0^1(\Omega)$ spanned by the eigenfunctions corresponding to λ_i . $\|.\|$ denotes the norm in $H_0^1(\Omega)$ induced by the inner product $\langle u, v \rangle = \int_{\Omega} \nabla u \nabla v; u, v \in H_0^1(\Omega)$.

Theorem 1.1. Assume (f_0) and $(H_1) \quad \lambda_i \leq l(x) = \liminf_{|s| \to \infty} \frac{f(x,s)}{s} \leq k(x) = \limsup_{|s| \to +\infty} \frac{f(x,s)}{s} \leq \lambda_{i+2}$ uniformly for

a.e. $x \in \Omega$

 (H_2) for some j such that $2 \leq j \leq i, \lambda_j$ is not simple i.e. $dim E(\lambda_j) \geq 2$

 $(H_3) L(x) = \liminf_{|s| \to +\infty} \frac{2F(x,s)}{s^2} \succeq \lambda_{i+1} \text{ uniformly for a.e. } x \in \Omega$

then for any given $h \in L^2(\Omega)$, there exists a weak solution of (1.1).

Remark: We can replace (H_3) , by one of the following conditions

1)
$$\lim_{\|v\|\to+\infty, v\in\bigoplus_{1\le p\le i+1}E(\lambda_p)} \int_{\Omega} F(x,v(x)) - \frac{1}{2}\lambda_{i+1}v^2 = +\infty.$$

2)
$$K(x) = \limsup_{|s| \to +\infty} \frac{2F(x,s)}{s^2} \preceq \lambda_{i+1}.$$

3)
$$\int_{v>0} (L_{+}(x) - \lambda_{i+1}) v^{2} + \int_{v<0} (L_{-}(x) - \lambda_{i+1}) v^{2} > 0; v \in E(\lambda_{i+1}) \text{ and}$$
$$v \neq 0 \text{ and } L_{\pm}(x) = \liminf_{s \to \pm \infty} \frac{2F(x,s)}{s^{2}} \ge \lambda_{i+1}.$$

4)
$$\int_{v>0} (\lambda_{i+1} - K_+(x)) v^2 + \int_{v<0} (\lambda_{i+1} - K_-(x)) v^2 > 0; v \in E(\lambda_{i+1}) \text{ and}$$
$$v \neq 0 \text{ and } K_{\pm}(x) = \limsup_{s \to \pm \infty} \frac{2F(x,s)}{s^2} \le \lambda_{i+1}$$

these limits are taken uniformly for a.e. $x \in \Omega$

Corollary 1.1. Assume (f_0) , (H_1) , (H_2) and (H_4) $F(x,s) \leq 0$ for $|s| \leq \delta$ ($\delta > 0$) (H_5) $F(x,s) \leq As^2 + B$ $A, B \in$ then if h = 0 the problem (1.1) possesses a nontrivial solution.

Corollary 1.2. Assume (f_0) , (H_1) , (H_2) and

$$(H_6) F(x,t+s) \ge F(x,t) + F(x,s) + B(x); B(.) \in L^1(\Omega)$$

$$(H_7) \qquad \lim_{\|v\|\to+\infty; v\in E(\lambda_{i+1})} \int_{\Omega} F(x,v(x)) - \frac{1}{2}\lambda_{i+1}v^2 \, dx = +\infty$$

then the problem (1.1) possesses a solution for any given h in $E(\lambda_{i+1})^{\perp}$.

Where $E(\lambda_{i+1})^{\perp} = \{h \in L^2(\Omega) : \int_{\Omega} h\varphi = 0 \quad \forall \varphi \in E(\lambda_{i+1})\}$

This generalizes many of the existing results for doubly resonant problems. see e.g. [3]; [7]; [4]; ... Our approach to the problem (1.1) is variational and uses the well-known saddle point theorem of P. Rabinowitz.

2. Preliminary Lemmas

From the conditions (f_0) and (H_1) , it follows that there exists constants a, A > 0 and functions $b(.) \in L^2(\Omega), B(.) \in L^1(\Omega)$ such that

(1)
$$|f(x,s)| \le a|s| + b(x)$$

and

(2)
$$|F(x,s)| \le A|s|^2 + B(x)$$

hence, the functional

$$\Phi(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) - \int_{\Omega} hu$$

is well defined, lower semi-continuous and of class ¹ on the Sobolev space $H_0^1(\Omega)$ with derivative $\Phi'(u)$ given by

$$\Phi'(u)w = \int_{\Omega} \nabla u \nabla w - \int_{\Omega} f(x, u)w - \int_{\Omega} hw.$$

for all $u, w \in H_0^1(\Omega)$, thus the critical points of Φ are precisely the weak solutions of (1.1).

Let $(u_n) \subset H^1_0(\Omega)$ be an unbounded sequence, such that

(3)
$$\Phi(u_n)$$
 is bounded and $\Phi'(u_n) \to 0$.

Defining (v_n) by $v_n = \frac{u_n}{\|u_n\|}$, we have $\|v_n\| = 1$ and, passing to a subsequence (still denoted by (v_n)), we may assume

$$v_n
ightarrow v$$
 weakly in $H_0^1(\Omega)$
 $v_n
ightarrow v$ strongly in $L^2(\Omega)$
 $v_n(x)
ightarrow v(x) \ a.e. \ x \in \Omega$
 $|v_n| \le z(x)$ where $z(.) \in L^2(\Omega)$.

Assuming (f_0) and (H_1) , we obtain that the sequence $(\frac{f(x, u_n)}{\|u_n\|})$ is bounded in $L^2(\Omega)$, so we may assume that

(4)
$$\frac{f(x, u_n)}{\|u_n\|} \rightharpoonup \tilde{f} \quad \text{weakly in } L^2(\Omega).$$

An easy calculation (see [4]) shows that

(5)
$$l(x) \le \frac{\tilde{f}(x)}{v(x)} \le k(x) \quad \text{if } v(x) \ne 0$$

and

(6)
$$\tilde{f}(x) = 0$$
 if $v(x) = 0$.

Let us define

$$m(x) = \begin{cases} \frac{\tilde{f}}{v(x)} & \text{if } v(x) \neq 0\\ \frac{1}{2}(l(x) + k(x)) & \text{if } v(x) = 0. \end{cases}$$

Then by (5) and (6), we have

(7)
$$\tilde{f}(x) = m(x)v(x) \text{ and } l(x) \le m(x) \le k(x)$$

Lemma 2.1. Assume (f_0) and (H_1) , then v is a nontrivial solution of the following problem

(1.2)
$$-\Delta u = m(.)u \quad \text{in } \Omega \ ; \ u = 0 \quad \text{on } \partial \Omega$$

Proof. Using (3) we have $|\Phi'(u_n)w| \leq \varepsilon_n ||w||$ for all $w \in H_0^1(\Omega)$, where $\varepsilon_n \to 0$, therefore

$$\frac{|\Phi'(u_n)u_n|}{\|u_n\|^2} = \left|1 - \int_{\Omega} \frac{f(x, u_n)}{\|u_n\|} v_n - \frac{1}{\|u_n\|} \int_{\Omega} hv_n\right| \le \frac{\varepsilon_n}{\|u_n\|}$$

hence, by (4) and the fact that $v_n \to v$ in $L^2(\Omega)$, we obtain $\int_{\Omega} \tilde{f}v = 1$, so that $v \neq 0$.

On the other hand, for any $w \in H_0^1(\Omega)$ we have

$$\frac{|\Phi'(u_n)w|}{\|u_n\|} = \left| \int_{\Omega} \nabla v_n \nabla w - \int_{\Omega} \frac{f(x, u_n)}{\|u_n\|} w - \frac{1}{\|u_n\|} \int_{\Omega} hw \right| \le \frac{\varepsilon_n}{\|u_n\|} \|w\|$$

passing to the limit, we conclude

$$\int_{\Omega} \nabla v \nabla w - \int_{\Omega} \tilde{f} w = 0 \quad \forall w \in H_0^1(\Omega)$$

that is

$$\int_{\Omega} \nabla v \nabla w - \int_{\Omega} m(x) v w = 0 \quad \forall w \in H^1_0(\Omega)$$

in other words v is a weak solution of (1.2), moreover $v \neq 0$. So the proof of lemma 2.1 is complete.

Lemma 2.2. Assume (f_0) , (H_1) and (H_2) then the functional Φ satisfies the Palais-Smale condition (PS), that is whenever $(u_n) \subset H_0^1(\Omega)$ is a sequence such that $\Phi(u_n)$ is bounded and $\Phi'(u_n) \to 0$ then (u_n) possesses a convergent subsequence

Proof : Let $(u_n) \subset H_0^1(\Omega)$ be such that $|\Phi(u_n)| \leq c, \Phi'(u_n) \to 0$. Since $\Phi'(u) = u - T(u)$ where T is a compact operator from $H_0^1(\Omega)$ to $H^{-1}(\Omega)$ $(T(u)w = \int_{\Omega} f(x, u)w - \int_{\Omega} hw)$, in order to show that (u_n) has a convergent subsequence it suffices to show that (u_n) is bounded. Suppose by contradiction that

$$\|u_n\| \to +\infty$$

Let $v_n = \frac{u_n}{\|u_n\|}$, then, as we observed in (7) and lemma 2.1 there exists a subsequence of (v_n) (still denoted by (v_n)) such that $v_n \rightharpoonup v$ in $H_0^1(\Omega), v_n \rightarrow v$ strongly in $L^2(\Omega)$ and v is a nontrivial solution of the problem

$$-\Delta u = m(.)u$$
 in Ω ; $u = 0$ on $\partial \Omega$

where

$$l(x) \le m(x) \le k(x)$$

so we conclude that

(9)
$$1 \in \sigma(-\Delta, m(.))$$

and

(10)
$$\lambda_i \preceq m(.) \preceq \lambda_{i+2}$$

On the other hand, by (10) and the strict monotonicity of $\lambda_i(m)$ we deduce

$$\lambda_i(\lambda_i(1)) > \lambda_i(m(.))$$
 and $\lambda_{i+2}(m(.)) > \lambda_{i+2}(\lambda_{i+2}(1))$

hence

$$1 > \lambda_i(m(.))$$
 and $\lambda_{i+2}(m(.)) > 1$

that is

(11)
$$\lambda_i(m(.)) < 1 < \lambda_{i+2}(m(.)).$$

it follows from (9) and (11) that

(12)
$$1 = \lambda_{i+1}(m(.)).$$

In view of the variational characterization of λ_{i+1} we have

(13)
$$1 = \sup_{F_{i+1}} \inf \left\{ \int_{\Omega} m(.)u^2 : \|u\| = 1, u \in F_{i+1} \right\}$$

where F_{i+1} varies over all i + 1- dimensional subspace of $H_0^1(\Omega)$. On the other hand, we claim that there exists $\varepsilon > 0$ such that

(14)
$$\inf\left\{\int_{\Omega} mu^2 : \|u\| = 1, \ u \in \bigoplus_{1 \le p \le i} E(\lambda_p)\right\} \ge 1 + \varepsilon$$

Indeed, suppose (14) is false, then there exists a sequence (u_n) in $\bigoplus_{1 \le p \le i} E(\lambda_p)$, $||u_n|| = 1$ and a sequence (ε_n) in ^{*+} such that

(15)
$$\varepsilon_n \to 0 \text{ and } \int_{\Omega} m(.) u_n^2 \leq 1 + \varepsilon_n.$$

Since $||u_n|| = 1$ and $\dim \bigoplus_{1 \le p \le i} E(\lambda_p) < \infty$, we deduce

(16)
$$u_n \to u, \ \|u\| = 1 \text{ and } \|u\|^2 \le \lambda_i \int_{\Omega} u^2.$$

Passing to the limit in (15) we conclude

(17)
$$\int_{\Omega} m(x)u^2 \, dx \le 1$$

combining (10), (16) and (17) we obtain

$$1 = ||u||^2 = \lambda_i \int_{\Omega} u^2 = \int_{\Omega} mu^2$$

hence

(18)
$$u \in E(\lambda_i) \text{ and } \int_{\Omega} (m - \lambda_i) u^2 = 0.$$

Since $m(.) \geq \lambda_i$ and $u \in E(\lambda_i)$ satisfies the unique continuation principle, (18) implies that $m(.) = \lambda_i$ a.e. $x \in \Omega$, which contradicts (H_1) and shows that (15) can not occur. To complete the proof of lemma 2.2, let $F \subset \bigoplus_{1 \leq p \leq i} E(\lambda_p)$ such that $\dim F = i + 1$ (it is possible by hypothesis (H_2)), it follows from (14) that

$$\inf\left\{\int_{\Omega} mu^2, \|u\| = 1, \ u \in F\right\} \ge 1 + \varepsilon$$

which contradicts (13), so (8) can not occur and the proof of lemma 2.2 is complete.

Let us take the decomposition $H_0^1(\Omega) = V \oplus W$ where V is the subspace spanned by the eigenfunctions corresponding to $\lambda_j, j = 1, \ldots, i + 1$, and $W = V^{\perp}$. It is easy to see that (H_1) implies

(19)
$$K(x) = \limsup_{|s| \to +\infty} \frac{2F(x,s)}{s^2} \preceq \lambda_{i+2}$$

Lemma 2.3. Assume (f_0) , (H_1) and (H_3) , then we have

 $egin{array}{c} i) & & \ ii \end{pmatrix}$

$$\lim_{\substack{\|v\|\to+\infty; v\in V}} \Phi(v) = -\infty$$
$$\lim_{\|w\|\to+\infty; w\in W} \Phi(w) = +\infty$$

Proof. Combining (H_3) and (19) the above results follows.

3. Proof Of The Main Results

Proof of theorem 1.1. We can easily see that the functional Φ :

$$\Phi(u) = \frac{1}{2} \|u\|^2 - \int_{\Omega} F(x, u) - hu \ dx$$

is weakly lower semicontinuous. Therefore, since $\Phi_{|W}$ is coercive, (lemma2.3 ii)) the infinimum $\beta = \inf \Phi_{|W} > -\infty$ is attained. Taking

 $\alpha < \beta$ by *i*) of lemma 2.3 there exists R > 0 such that $\Phi(v) \leq \alpha$ for all $v \in V$ with $||v|| \geq R$. Finally since Φ satisfies the Palais-Smale condition, (lemma 2.2) we can apply the saddle point theorem of P. Rabinowitz to conclude the existence of a critical point $u_0 \in H_0^1$ of Φ , so the proof is complete.

Proof of corollary 1.1. To show the corollary 1.1, it suffices to show :

i) there exists $\rho > 0$ such that

(20)
$$\Phi(u) \ge \alpha > 0 \text{ if } ||u|| = \rho, u \in H_0^1(\Omega)$$

and ii) By hypotheses (H_1) and (H_2) we deduce

(21)
$$\lim_{|t| \to +\infty} \Phi(t\varphi_1) = -\infty$$

 φ_1 is a λ_1 normalized eigenfunction.

Combining (20), (21) and lemma 2.2 we can apply the Mountain-Pass theorem to conclude that Φ has a critical value $\Phi(u_0)$ with $\Phi(u_0) \ge \alpha > 0$.

Proof of corollary 1.2. It is easy to show from (H_1) , (H_6) and (H_7) that

(20)
$$\lim_{\|v\|\to+\infty; v\in V} \Phi(v) = -\infty$$

On the other hand we have

(21)
$$\lim_{\|w\|\to+\infty,\,w\in W}\Phi(w)=+\infty$$

so by lemma 2.2, (20) and (21) we deduce the result.

References

- [1] R. A. Adams, Sobolev spaces, Academic Press, New York, (1975).
- [2] L. Boccardo, P. Drabek, D. Giachetti, M. Kucera, Generalisation of Fredholm alternative for nonlinear differential operator, Nonli. An. Th. Math. Appl. 10, pp. 1083-1103, (1986).
- [3] H. Berestycki, D. G. de Figueiredo, Double resonance in semilinear elliptic problems. Comm. Partial Differential Equations 6, pp. 91 - 120, (1981).
- [4] D. G. Costa, A. S. Oliveira, Existence of solutions for a class of semilinear elliptic problems at double resonance. Bol. Soc. BRAS. Mat., vol 19, pp. 21-37, (1988).
- [5] D. G. Costa, E. A. Deb and E. Silva, Existence of solutions for a class of resonant elliptic problems. J. Math. Anal. Appl. 175, pp. 411-424, (1993).
- [6] D. G. Costa, C. A. Magalhçes, Variational elliptic problems which are nonquadratic at infinity. Nonlinear Analysis, vol 23. No 11, pp. 1401-1412, (1994).
- [7] D. G. de Figueiredo, J. P. Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaire, C. R. Acad. Sci. Paris 302, pp. 543-545, (1986).
- [8] D. G. de Figueiredo, J. P. Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic problems, Math. An. 281, pp. 589-610, (1988).
- [9] D. G. de Figueiredo, J. P. Gossez, Strict monotonicity of eigenvalues and unique contination, Comm. Part. Diff. Eq., 17, pp. 339-346, (1992)
- [10] J. Mawhin, J. R. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis TMA, pp. 677-694, (1981).

- [11] J. Mawhin, J. R. Ward, M. Willem, Variational methods of semilinear elliptic equations. Arch. Rat. Mech. An 95, pp. 269-277, (1986).
- [12] P. H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis, Cesari, Kannan and Weinberger. Eds, 161-177, Academic Press, Orlando, Fl. (1978).
- [13] P. H. Rabinowitz, Some minimax methods in critical point theory with applications to differential equations, CBMS, Regional conf. Ser. Math., vol 65 AMS, Providence Ri. (1986).
- [14] M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math., 112, pp. 439-460, (1990).
- [15] E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Analysis TMA, 16, pp. 455-477, (1991).

Received : June, 2000.

M. Moussaoui and M. Moussaoui

Department of Mathematics

Faculty of Sciences

University Mohamed I

P. O. Box 524

60000 Oujda

Morocco

E-MAIL : moussaoui@sciences.univ-oujda.ac.ma