Proyecciones
Vol. 21, N° 1, pp. 9-19, May 2002.
Universidad Catdlica del Norte

Antofagasta - Chile
DOI: 10.4067/S0716-09172002000100002

ASYMPTOTIC EQUILIBRIUM FOR
CERTAIN TYPE OF DIFFERENTIAL
EQUATIONS WITH MAXIMUM *

PATRICIO GONZALEZ
Universidad Arturo Prat - Chile

and

MANUEL PINTO
Universidad de Chile - Chile

Abstract
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1. Introduction

Differential equations with maximum arise naturally when solving
practical problems, in particular, in those which appear in the study of
systems with automatic regulation. A classical example is that of an
electric generator. In this case, the mechanism becomes actived when
the maximum voltage variation that is permited is reached in an in-
terval of time I, = [t — h,t], with h a positive constant.The equation
which describes the actioning of this regulator has the form

V' (t) = =6V (¢) +pr§16aji<V(s) + F(t),

where 0 and p are constants that are determined by the caracteris-
tic of the system, V(t) is the voltage and F(t) is the effect of the
perturbation that appears associated to the change of voltage [2].

Much work on these equations has been carried out in the last
three decades. We mention the work in [1-2] and [8,11].
We study differential equations with maximum of the form
Z(t) = f(t,z(t), max z(u)), withte I
(1.1)
x(t) = (1), with ¢ € [—h, 0]

where I = [0,b) and the possibility that b be infinity is not excluded. In
addition, f is a real - valued continuous function defined on  x R X R.
We denote by ||¢/the norm

lpll = max{|p(t)] /¢ € [=h, 0]},

Definition 1. A differential equation with maximum (1.1) as above
has the property of asymptotic equilibrium if:

1. Every solution x(t) of (1.1) with initial condition x(t) =
o(t), for all t € [—h,0], is defined for all t > —h and there
exists & € R which satisfies
(1.2) lim z(t) = ¢

t—00
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2. For all ¢ € R, there exists a solution x(t) of (1.1), which is
defined on the interval [—h,c0) and verifies (2.1).

Our main result asserts, under certain hypotheses on the function
f, equation (1.1) has asymptotic equilibrium. The techniques used in
the proof are based on an inequality of Gronwall - Bellman type and
succesive aproximations. The method used is analogous to those of
[3-10].

Our principal results are applied to automatic control problems
described by nonlinear equations of the type

Vi(t)==0V(t)+pmax V (s)+ F(¢t,V (1)) .

sel;

2. Main Results

In this paragraph we prove theorems about asymptotic behavior and
boundedness of the solutions of equation (1.1). We first recall some
basic inequality of Gronwall - Bellman type which we use in the study
of the differential equation with maximum (1.1).

Lemma 1. Let p, x be continuous and nonnegative functions on [0, b)
and [0 a nonnegative continuous function. If the inequality

t

z(t) < z(0) + /p(s) max z(u) ds

u€ely
0
holds, for all t € [0,b), with z(t) = ¢(t) for all t € [—h,0],then
o(t) < il elor *

for all t € [0,b).
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Theorem 1. Suppose that f satisfies the following hypotheses:

[Hy] fis continuous on I X R x R, where I = [0,00).

[Hi] There exist A and [ integrable functions on I such that, for
all (t,z,y) € I x R x R, we have

(2.1) [f(t 2, 9)] <A@ (2] + [y]) + 6).
Then, every solution x(t) with x(t) = ¢(t), for all t € [—h,0] , is
defined on [—h, 00) and satisfies (1.2) for some £ € R. In addition, we

have x(t)=¢ + O (?[A(s) + B(s)] ds)

Proof. If x(t) is a solution of equation (1.1) such that z(t) = ¢(¢), for
all ¢ in [—h, 0], and defined on a subinterval J = [—h,T) of [—h, c0),
then

(2.2) —l—/f s, x( , max z(u)) ds,

for all ¢ in [0,T"). Therefore, for all ¢ in [0,7"), we have

2O < Ja(0)]+ f A6 (Jo(6)] + |max o (w)) ds + [ Bs)ds
< |2(0)] + ;fﬁ (s) ds + OftzA (5) ma | () ds.

By lemma 1,

el +/@ ds] eh 2

for all ¢ in the interval .J, which shows that z(¢) is bounded in the
interval J. Therefore, the left limit (7" — 0) exists, when ¢ tends to 7.
Since the initial value problem

y'(t) = f(t,y(t), max y(u)),

uely

jz(8)] <

ol +/g ds] 2 s

with initial condition y(t) = x(t) in [T'— h,T) and where y(T) =
z(T —0) has a local solution, we conclude that it is possible to extend
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x beyond T. This shows that solution z(t) of equation (1.1) is defined
on [—h,o0) and there exists a constant M such that |z(t)| < M, for
all t € [—h,00).
Since f(s,z(s), max x(u)) is integrable on I, from equation (2.2)
ucls
it follows that

u€cls u€ls

x(t) = z(0) + /f(s,m(s), max z(u)) ds — /f(s,x(s), max x(u)) ds.

Let & denote the real number given by
x(0)+ [ f(s,z(s), max x(u)) ds, then, we have
0 uels

2(t) — ¢ < 7A<s> (I2()1+ max ()] ds+7ﬁ($)d5

A
[\
=
—
>
=
+
—
@
=
sy
&

thus,
x(t)=6 + 0 (f IA(s) + B(s)] ds) .

Theorem 2. If f satisfies conditions

[Ho] fis continuous on I X R x R and f(t,0,0) is integrable on
I, where I = |0, c0).

[Hy] There exists a positive and integrable function p on I such
that, for all (t,z1,y1), (t,22,y2) in I X R X R, we have

|t z1,90) = f(t @2, 92)| < p(t) (lor — @2 + [y1 — o) and there
exist a nonnegative real constant K such that, for all s € [0, 00)

pu(s) < Kp(s — h).

Then for all £ € R there exists a solution x(t) of (1.1) which is defined
on [—h,o0) and verifies (1.2). In addition, we have
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(2.3) x(t) =€+ /f(s,0,0) ds + O (/ u(s) ds) :

Proof. Let B denote the Banach space of the real bounded functions
g defined on [—h, 00) with the norm defined by

lgll = {sup|g(t)] / t € [=h,00)}.
Consider the operator T': B — B defined by

T(X)(t)zg—ofof(s, x(s), max z(u)) ds for allt > 0, and by T(x)(t)=¢,
t ucls
for all t € [—h,0].
In order to prove that T': B — B has a fixed point, we must show
that there exists an integer n such that T™ is a contractive operator.

For this, it suffices to show that, for all x,y in B and for all positive
integer n, we have

(2.4) (") (1) = (T"2) ()] < == ( [ 2K uis) ds) ly 1.

We proceed by induction.
First, we verify that the inequality is true for n = 1.

(Ty) () — (T)(2)]

[e.e]

/ (f(S»y(S), max y(u)) — f(s,z(s), max x(u))) ds

u€ls
t

[ 66) {l(5) = (6) + mae () = ot} s

IN

< [ 2u(s) max ly(u) - a(u)| ds

< ( / 2us) ds) Iy -z
. ( [ 2 u(s) ds) ly — ]

IN



and x(t)=¢, for all ¢ € [—h,0],
(1.1) such that x(t) = ¢(t), for all t in [—h, 0].
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Next, if the formula were true for n — 1, then
|(T’;y) (t) — (T"x)(1)]
= [T (4 (s T t9)(s), max (7 () -
f <s, (T 1z)(s), max (T z) (u))) ds
< J ) {1 ) (5) = (17 12) ()] +
max (7" 'y) (u) — (T"'x) (u)} ds

uEI
< Tous o gl D)= (1) (s
< T2l - ,(:f’z ryar) ly—al ds

< fox <3_h>K( 5 (Feruar) ™ sl as

1
< (T2K p(9)ds) g2l
Swa\ u(s)ds y—x|.

15

Since p(t) is integrable on I, we can find a positive integer n such

that the operator T™ is a contraction. Therefore, there exists a fixed

point = of T, and then x(t)=¢£— j’of(s, x(s), max x(u)) ds for all t > 0,
t uclts

i. e. xz(t) is a solution of equation

Since ‘x(t) —&— Ofof(s,O,O) ds’ < K 70/1(3) ds we can see that
t t

(2.3) is verified.

Example 1 : C0n51der the differential equation with maximum

u€l

x'(t) = (1+t)2 max z(u)
z(t) =e7 2 for t € [—h,0)

2
We have that f(t,x,y) = (1 +1)2

integrable function on I x R x R and

2 2
10000 = | s 3] < pggalel -

y is a real-valued, continuous,
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2
The function A(t) = m is continuous and integrable on I .
Thus f satisfies conditions Hy and H; and by Theorems 1 and 2, every
solution x(t) is defined on [—h, c0) and verifies

T 2
2.5 H=¢+0| [As)s) = 0()
25)  al=¢+ ( (5 ) £+0 (1
and reciprocally for any £ € R there exists a solution = defined on
[—h, 00] and satisfying asymptotic formula (2.5).
exp (—%ﬂ) , for tel
exp(—2), for t¢&[—h,0]
is an explicit solution of the differential equation which in effect sat-
isfies formula (2.5).

In this example, the function x(t):{

Example 2. In the differential equation with maximum

7' (t) = 21+Jiitgt3;(t) + ﬁ max x (u)
z(t)=o0

2+sint 2

the functi t =
eunClOIlf(,fan) 1+1¢2 x+(1—|—t)

>y is continuous for

t>—-1,xre R, yeR.
Moreover,
|f(t 2, y1) — f(t 22, y2)| = pa(t) |21 — 22| + pa(t) [y1 — 2
< p(t) (Jz1 — 22| + |y1 — w2|)

2 int
with p(t) = max{p(t), u2(t)}, where p(t) = |1++Sltr;‘ and
2
pa(t) = (1+1¢)%

Since f satisfies conditions Hy , Hy and H, we have that for ev-
ery solution z(t) of the given equation, there exists £ € R such that
x(t)=¢ + O(5 — arctant).

Conversely, for each £ € R , there exist a solution x(t) defined on
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the interval [—h, 00) such that

z(t) =6+ 0 (/A(s)ds) =¢+ O(g — arctant).

Example 3 : (Application to semilinear electrogenerators) : Consider
the differential equation with maximum

{ () = a(t)x(t) + g(t, x(t), max x(s)), for t € [0, 00)
z(t) = edo dse. for t € [—h,0]

where a is a continuous function on [ and ¢ is a continuous function
— [Ta(s)ds fta(s) ds fta(s) ds
on I X R x R, such that f(t,x,y)=e Jo () g(t,elo x,elo Y)
verifies conditions Hy andtHQ.
Substitution z(t) = elo 4(*) “y(t) in this equation gives

t t s
V() = et Py(r,eh @ Coe) max el #u(s))
sClt

By Theorem 2 | there exists a solution v of the differential equation

{ V'(t) = f(t, (1), rsneagc v(s)) defined in [—h, 00) such that
v(t)=¢, t€[-h,0]

v(t)=¢ + :fof(s, 0,0) ds+ O (?u(s)ds) then

X(t):efot als) ds {§ + :foe Jo oM (5,0,0) ds + O (Tu(s)ds)}

If function a is integrable in the interval I then the solutions of the
t

equation are stables. If [a(s)ds tends to —oo as t approaches infinity
0

then, the solutions of the system are asymptotically stables.

We can apply this result to an automatic control problem described
by a nonlinear equation of the type
{ VI(t) = —6V(t) + p(t) max V(s) + F(t) , if tel

V(t)=e%¢ | if t€[—h,0]
where ¢ is a positive constant, p, ' are continuous and integrable func-
tions on I and there exists a nonnegative real constant K, such that,
for all s € [0,00) , p(s) < Kp(s—h) . We can see there exists a solution



18

Patricio Gonzilez y Manuel Pinto

V (t)of this equation such that the following asymptotic representation
is verified V(t)=e™% {f + [e%F(s) ds+ O (f p(s)ds)}
t t
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