Proyecciones Journal of Mathematics
Vol. 36, N ${ }^{o}$ 2, pp. 307-324, June 2017.
Universidad Católica del Norte
Antofagasta - Chile

An Algorithmic Approach to Equitable Total Chromatic Number of Graphs

Veninstine Vivik J. Karunya University, India and
Girija G.
Government Arts College, India
Received: June 2016. Accepted : January 2017

Abstract

The equitable total coloring of a graph G is a combination of vertex and edge coloring whose color classes differs by atmost one. In this paper, we find the equitable total chromatic number for S_{n}, W_{n}, H_{n} and G_{n}.

Keywords: Equitable total coloring, Wheel, Helm, Gear, Sunlet

1. Introduction

Graphs in this paper are finite, simple and undirected graphs without loops. The total coloring was introduced by Behzad and Vizing in 1964. A total coloring of a graph G is a coloring of all elements (i.e,vertices and edges) of G, such that no two adjacent or incident elements receive the same color. The minimum number of colors is called the total chromatic number of G and is denoted by $\chi^{\prime \prime}(G)$. In 1973, Meyer[7] presented the concept of equitable coloring and conjectured that the equitable chromatic number of a connected graph G, is atmost $\Delta(G)$. In 1994, Hung-lin Fu first introduced the concepts of equitable total coloring and equitable total chromatic number of a graph. Furthermore Fu presented a conjecture concerning the equitable total chromatic number, $\chi_{=}^{\prime \prime}(G) \leq \Delta+2$.
Let $G=(V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Clearly $\chi_{=}^{\prime \prime}(G) \geq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of G. In 1989, Sanchez Arroyo[8] proved that the problem of determining the total chromatic number of an arbitrary graph is NP-hard. It is also NP - Hard to decide $\chi_{=}^{\prime \prime}(G) \leq \Delta(G)+1$ or $\chi_{=}^{\prime \prime}(G) \leq \Delta(G)+2$. Graphs with $\chi_{=}^{\prime \prime}(G) \leq \Delta(G)+1$ are said to be of Type 1, and graphs with $\chi_{=}^{\prime \prime}(G) \leq \Delta(G)+2$ are said to be of Type 2 . The problem of deciding whether a graph is Type 1 has been shown NP-Complete in this paper for S_{n}, W_{n}, H_{n} and G_{n}.

2. Preliminaries

Definition 2.1. For any integer $n \geq 4$, the wheel graph W_{n} is the n vertex graph obtained by joining a vertex v_{0} to each of the $n-1$ vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of the cycle graph C_{n-1}.
Definition 2.2. The Helm graph H_{n} is the graph obtained from a Wheel graph W_{n} by adjoining a pendant edge to each vertex of the $n-1$ cycle in W_{n}.

Definition 2.3. The Gear graph G_{n} is the graph obtained from a Wheel graph W_{n} by adding a vertex to each edge of the $n-1$ cycle in W_{n}.

Definition 2.4. The n - sunlet graph on $2 n$ vertices is obtained by attaching n pendant edges to the cycle C_{n} and is denoted by S_{n}.
Definition 2.5. [6] For a simple graph $G(V, E)$, let f be a proper k-total coloring of G

$$
\left\|T_{i}|-| T_{j}\right\| \leq 1, i, j=1,2, \ldots, k
$$

The partition $\left\{T_{i}\right\}=\left\{V_{i} \cup E_{i}: 1 \leq i \leq k\right\}$ is called a k-equitable total coloring ($k-E T C$ of G in brief), and

$$
\chi_{=}^{\prime \prime}(G)=\min \{k: \text { there exists a } k-E T C \text { of } G\}
$$

is called the equitable total chromatic number of G, where $\forall x \in T_{i}=V_{i} \cup E_{i}$, $f(x)=i, i=1,2, \ldots, k$.

Following [4], let us denote the Total Coloring Conjecture by TCC.
Conjecture 2.6. [TCC] For any graph $G, \Delta(G)+1 \leq \chi^{\prime \prime}(G) \leq \Delta(G)+$ 2.

Conjecture 2.7. [4][10] For every graph G, G has an equitable total k-coloring for each $k \geq \max \left\{\chi^{\prime \prime}(G), \Delta(G)+2\right\}$.

Conjecture 2.8. [4] [ETCC] For every graph G, $\chi_{=}^{\prime \prime}(G) \leq \Delta(G)+2$.
Lemma 2.9. [6] For complete graph K_{p} with order p,

$$
\chi_{=}^{\prime \prime}\left(K_{p}\right)= \begin{cases}p, & p \equiv 1 \bmod 2 \\ p+1, & p \equiv 0 \bmod 2 .\end{cases}
$$

Lemma 2.10. [10] Let G be a graph consisting of two components G_{1} and G_{2}. If G_{1} and G_{2} are equitably total k-colorable, then so is G.

Proof. Let $\left(\widetilde{T_{1}}, \widetilde{T_{2}}, \ldots, \widetilde{T_{k}}\right)$ and $\left(\overline{T_{1}}, \overline{T_{2}}, \ldots, \overline{T_{k}}\right)$ be equitable total k-colorings of G_{1} and G_{2} repectively, satisfying $\left|\widetilde{T}_{1}\right| \leq\left|\widetilde{T_{2}}\right| \leq \ldots \leq\left|\widetilde{T_{k}}\right|$ and $\left|\overline{T_{1}}\right| \leq$ $\left|\overline{T_{2}}\right| \leq \ldots \leq\left|\overline{T_{k}}\right|$. Then we put

$$
T_{i}=\widetilde{T}_{i} \cup \bar{T}_{k-i+1}, \quad i=1,2, \ldots, k
$$

It is easy to see that $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ is an equitable total k-coloring of G .
In the following section, we determine the equitable total chromatic number of S_{n}, W_{n}, H_{n} and G_{n}.

3. Main Results

Theorem 3.1. For Sunlet graph S_{n} with $n \geq 3$, $\chi_{=}^{\prime \prime}\left(S_{n}\right)=4$.

Proof. Let S_{n} be the sunlet graph on $2 n$ vertices and $2 n$ edges.

$$
\begin{aligned}
& \text { Let } V\left(S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \bigcup\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \text { and } \\
& \qquad E\left(S_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{n}\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\}
\end{aligned}
$$

where e_{i} is the edge $v_{i} v_{i+1}(1 \leq i \leq n-1), e_{n}$ is the edge $v_{n} v_{1}$ and e_{i}^{\prime} is the edge $v_{i} u_{i}(1 \leq i \leq n)$.

We define an equitable total coloring f, such that $f: S \rightarrow C$ where $S=V\left(S_{n}\right) \cup E\left(S_{n}\right)$ and $C=\{1,2,3,4\}$. The order of coloring is followed by coloring the pendant vertices first followed by pendant edges, rim vertices and rim edges respectively. In this total coloration, $C\left(u_{i}\right)$ means the color of the $i^{\text {th }}$ pendant vertex $u_{i}, C\left(e_{i}\right)$ means the color of the $i^{\text {th }}$ rim edge e_{i} and $C\left(e_{i}^{\prime}\right)$ means the color of the $i^{t h}$ pendant edge e_{i}^{\prime}. While coloring, when the value $\bmod 4$ is equal to 0 it should be replaced by 4 .

Case 1: $n \equiv 0(\bmod 4)$

$$
\left.\begin{array}{l}
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 4) \\
2, \text { if } i \equiv 2(\bmod 4) \\
3, \text { if } i \equiv 3(\bmod 4) \\
4, \text { if } i \equiv 0(\bmod 4)
\end{array}\right. \\
f\left(e_{i}^{\prime}\right)=\left\{C\left(u_{i}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n \\
f\left(v_{i}\right)=\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n
\end{array}\right\}
$$

Case 2: $n \equiv 1(\bmod 4)$

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 4) \\
2, \text { if } i \equiv 2(\bmod 4) \\
3, \text { if } i \equiv 3(\bmod 4) \\
4, \text { if } i \equiv 0(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n-2\right. \\
& f\left(u_{n-1}\right)=1 \\
& f\left(u_{n}\right)=4
\end{aligned}
$$

$$
\begin{gathered}
f\left(e_{i}^{\prime}\right)=\left\{C\left(u_{i}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-2 \\
f\left(e_{n-1}^{\prime}\right)=2 \\
f\left(e_{n}^{\prime}\right)=3 \\
f\left(v_{i}\right)=\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-2 \\
f\left(v_{n-1}\right)=4 \\
\\
f\left(v_{n}\right)=2 \\
f\left(e_{i}\right)=C\left(u_{i}\right), \text { for } 1 \leq i \leq n
\end{gathered}
$$

Case 3: $n \equiv 2(\bmod 4)$

$$
\left.\begin{array}{c}
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 4) \\
2, \text { if } i \equiv 2(\bmod 4) \\
3, \text { if } i \equiv 3(\bmod 4) \\
4, \text { if } i \equiv 0(\bmod 4)
\end{array}\right. \\
f\left(u_{n}\right)=4
\end{array}\right\} \begin{aligned}
& f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
\left\{C\left(u_{i}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-1 \\
3, \text { for } i=n
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-1 \\
2, \text { for } i=n
\end{array}\right. \\
& f\left(e_{i}\right)=C\left(u_{i}\right), \text { for } 1 \leq i \leq n
\end{aligned}
$$

Case 4: $n \equiv 3(\bmod 4)$

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 4) \\
2, \text { if } i \equiv 2(\bmod 4) \\
3, \text { if } i \equiv 3(\bmod 4) \\
4, \text { if } i \equiv 0(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n-1\right.
$$

$$
\begin{gathered}
f\left(u_{n}\right)=4 \\
f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
\left\{C\left(u_{i}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-1 \\
3, \text { for } i=n
\end{array}\right. \\
f\left(v_{i}\right)=\left\{\begin{array}{l}
\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4), \text { for } 1 \leq i \leq n-1 \\
1, \text { for } i=n
\end{array}\right. \\
f\left(e_{i}\right)=C\left(u_{i}\right), \text { for } 1 \leq i \leq n
\end{gathered}
$$

Based on the above mehod of coloring, we observe that S_{n} is equitably total colorable with 4 colors, such that its color classes are $T\left(S_{n}\right)=$ $\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$. Clearly these color classes $T_{1}, T_{2}, T_{3}, T_{4}$ are independent sets of S_{n} with no vertices and edges in common and satisfies $\| T_{i}\left|-\left|T_{j}\right|\right| \leq$ 1 , for $i \neq j$. For example consider the case $n \equiv 0(\bmod 4)$ (See Figure 1$)$, in this $\left|T_{1}\right|=\left|T_{2}\right|=\left|T_{3}\right|=\left|T_{4}\right|=n$ which implies $\| T_{i}\left|-\left|T_{j}\right|\right| \leq 1$, for $i \neq j$ and so it is equitably total colorable with 4 colors. Hence $\chi_{=}^{\prime \prime}\left(S_{n}\right) \leq 4$. Since $\Delta=3$, we have $\chi_{=}^{\prime \prime}\left(S_{n}\right) \geq \chi^{\prime \prime}\left(S_{n}\right) \geq \Delta+1(=4)$. Therefore $\chi_{=}^{\prime}\left(S_{n}\right)=4$. Similarly this is true for all other cases. Hence f is an equitable total 4 -coloring of S_{n}.

Figure 1: Sunlet S_{6}.

Algorithm : Equitable total coloring of Sunlet graph
Input: n, the number of vertices of S_{n} Output: Equitably total colored S_{n}

Initialize S_{n} with $2 n$ vertices, the rim vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and pendant vertices by $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$.

Initialize the adjacent edges on the rim by $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$ and pendant edges by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n}^{\prime}$.

Let f be the coloring of vertices and edges in S_{n} such that $f: S \rightarrow$ $\{1,2,3,4\}$ where $S=V\left(S_{n}\right) \cup E\left(S_{n}\right)$.

Apply the coloring rules of Theorem 3.1 for each of the following cases if $(n \equiv 0 \bmod 4)$

```
for }i=1\mathrm{ to }
{
e}\mp@subsup{i}{}{\prime}={C(\mp@subsup{u}{i}{})+1}(\operatorname{mod}4)
vi}={C(\mp@subsup{e}{i}{\prime})+1}(\operatorname{mod}4)
e}\mp@subsup{i}{=C}{=C}(\mp@subsup{u}{i}{})
}
end for
if (n\equiv1 mod 4)
for }i=1\mathrm{ to }n-
{
if (i=n-1)
u}=1
if (i=n)
u}=4
e}\mp@subsup{i}{i}{\prime}={C(\mp@subsup{u}{i}{})+1}(\operatorname{mod}4)
if (i=n-1)
e
if (i=n)
e}\mp@subsup{i}{i}{\prime}=3
vi}={C(\mp@subsup{e}{i}{\prime})+1}(\operatorname{mod}4)
if (i=n-1)
vi}=4
if (i=n)
vi}=2
}
end for
for }i=1\mathrm{ to }
{
e}=C(\mp@subsup{u}{i}{})
}
end for
if (n\equiv2 mod 4)
for }i=1\mathrm{ to }n-
{
if (i=n)
u
e}\mp@subsup{i}{i}{=}={C(\mp@subsup{u}{i}{})+1}(\operatorname{mod}4)
if (i=n)
e
```

```
\(v_{i}=\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4) ;\)
if \((i=n)\)
\(v_{i}=2\);
\}
end for
for \(i=1\) to \(n\)
\{
\(e_{i}=C\left(u_{i}\right) ;\)
\}
end for
if \((n \equiv 3 \bmod 4)\)
for \(i=1\) to \(n-1\)
\{
if \((i=n)\)
\(u_{i}=4\);
\(e_{i}^{\prime}=\left\{C\left(u_{i}\right)+1\right\}(\bmod 4)\);
if \((i=n)\)
\(e_{i}^{\prime}=3\);
\(v_{i}=\left\{C\left(e_{i}^{\prime}\right)+1\right\}(\bmod 4)\);
if \((i=n)\)
\(v_{i}=1\);
\}
end for
for \(i=1\) to \(n\)
\{
\(e_{i}=C\left(u_{i}\right) ;\)
\}
end for
return \(f\);
```

Theorem 3.2. For Wheel graph W_{n} with $n \geq 4, \chi_{=}^{\prime \prime}\left(W_{n}\right)=n$.
Proof. The Wheel graph W_{n} consists of n vertices and $2(n-1)$ edges.

$$
\begin{gathered}
\text { Let } V\left(W_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \text { and } \\
E\left(W_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-1\right\}
\end{gathered}
$$

where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1)$ and e_{i}^{\prime} is the edge $v_{i} v_{i+1}(1 \leq i \leq n-1)$.
We define an equitable total coloring f, such that $f: S \rightarrow C$ where $S=V\left(W_{n}\right) \cup E\left(W_{n}\right)$ and $C=\{1,2, \ldots, n\}$. In this coloration, $C\left(e_{i}\right)$
means the color of the $i^{\text {th }}$ edge e_{i} and when the value $\bmod n$ is equal to 0 it is replaced by n. The equitable total coloring is obtianed by coloring the vertices and edges as follows:

$$
\begin{gathered}
f\left(v_{0}\right)=1 \\
f\left(v_{1}\right)=n \\
f\left(v_{i}\right)=i, \text { for } 2 \leq i \leq n-1 \\
f\left(e_{i}\right)=i+1, \text { for } 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
\left\{C\left(e_{i}\right)+2\right\}(\bmod n), \text { for } 1 \leq i \leq n-2 \\
3, \text { for } i=n-1
\end{array}\right.
\end{gathered}
$$

It is clear from the above rule of coloring W_{n} is equitably total colorable with n colors. The color class of W_{n} are grouped as $T\left(W_{n}\right)=$ $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$, which are independent sets with no vertices and edges in common and $\left\|T_{i}|-| T_{j}\right\| \leq 1$, for any $i \neq j$. For example consider the case $n=7$ (See Figure 2), for which $\left|T_{1}\right|=\left|T_{2}\right|=2$ and $\left|T_{3}\right|=\left|T_{4}\right|=\left|T_{5}\right|=$ $\left|T_{6}\right|=\left|T_{7}\right|=3$, such that it satisfies the condition $\left|\left|T_{i}\right|-\left|T_{j}\right|\right| \leq 1$, for $i \neq j$. So it is equitably total colorable with n colors. Hence $\chi_{=}^{\prime \prime}\left(W_{n}\right) \leq n$. Further, since $\Delta=n-1$, we have $\chi_{=}^{\prime \prime}\left(W_{n}\right) \geq \chi^{\prime \prime}\left(W_{n}\right) \geq \Delta+1(=n)$. Therefore $\chi^{\prime \prime}\left(W_{n}\right)=n$. Similarly it holds the inequality $\left|\left|T_{i}\right|-\left|T_{j}\right|\right| \leq 1$ if $i \neq j$ for all other values of $n \geq 4$. Hence $\chi_{=}^{\prime}\left(W_{n}\right)=n$.

Figure 2: Wheel W_{7}.

Algorithm : Equitable total coloring of Wheel graph Input: n, the number of vertices of W_{n} Output: Equitably total colored W_{n}

Initialize W_{n} with n vertices, the center vertices by v_{0} and rim vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}$.

Initialize the adjacent edges on the center by $e_{1}, e_{2}, e_{3}, \ldots, e_{n-1}$ and adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$.

Let f be the coloring of vertices and edges in W_{n} such that $f: S \rightarrow$ $\{1,2, \ldots, n\}$ where $S=V\left(W_{n}\right) \cup E\left(W_{n}\right)$.

Apply the coloring rules of Theorem 3.2 for each of the following cases

```
for i=0 to n-1
{
if (i=0)
vi}=1
if (i=1)
vi=n;
else
vi}=i
}
```

end for

```
for \(i=1\) to \(n-1\)
\{
\(e_{i}=i+1\);
if \((i=n-1)\)
\(e_{i}^{\prime}=3\);
else
\(e_{i}^{\prime}=\left\{C\left(e_{i}\right)+2\right\}(\bmod n) ;\)
\}
end for
return \(f\);
```

Theorem 3.3. For Helm graph H_{n} with $n \geq 4, \chi_{=}^{\prime \prime}\left(H_{n}\right)=n$.

Proof. The Helm graph H_{n} consists of $2 n-1$ vertices and $3(n-1)$ edges.

Let $V\left(H_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n-1\right\}$ and
and $E\left(H_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-2\right\} \bigcup\left\{e_{n-1}^{\prime}\right\} \bigcup\left\{e_{i}^{\prime \prime}:\right.$ $1 \leq i \leq n-1\}$
where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1), e_{i}^{\prime}$ is the edge $v_{0} v_{i+1}(1 \leq i \leq n-2)$, e_{n-1}^{\prime} is the edge $v_{n-1} v_{1}$ and $e_{i}^{\prime \prime}$ is the edge $v_{i} u_{i}(1 \leq i \leq n-1)$.

Define a function $f: S \rightarrow C$ where $S=V\left(H_{n}\right) \cup E\left(H_{n}\right)$ and $C=$ $\{1,2, \ldots, n\}$. The equitable total coloring pattern is as follows:

$$
\begin{gathered}
f\left(v_{0}\right)=1 \\
f\left(v_{1}\right)=n-1 \\
f\left(v_{2}\right)=n \\
f\left(v_{i}\right)=i-1, \text { for } 3 \leq i \leq n-1 \\
f\left(e_{i}\right)=i+1, \text { for } 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
i+3(\bmod n), \text { for } 1 \leq i \leq n-2 \\
3, \\
\text { for } i=n-1
\end{array}\right.
\end{gathered}
$$

$$
\begin{gathered}
f\left(e_{i}^{\prime \prime}\right)=\left\{\begin{array}{l}
i+4(\bmod n), \text { for } 1 \leq i \leq n-2 \\
4, \text { for } i=n-1
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=i, \text { for } 1 \leq i \leq n-1
\end{gathered}
$$

With this pattern we can equitably total color the graph H_{n} with n colors. The color classes of H_{n} are grouped as $T\left(H_{n}\right)=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ which are independent sets and satisfies the condition $\| T_{i}\left|-\left|T_{j}\right|\right| \leq 1$, $i \neq j$. For example consider the case $n=7$ (See Figure 3), for which $\left|T_{1}\right|=\left|T_{2}\right|=\left|T_{3}\right|=\left|T_{7}\right|=4$ and $\left|T_{4}\right|=\left|T_{5}\right|=\left|T_{6}\right|=5$. This implies $\left|\left|T_{i}\right|-\left|T_{j}\right|\right| \leq 1$, for $i \neq j$ and so it is equitably total colorable with n colors. Hence $\chi_{=}^{\prime \prime}\left(H_{n}\right) \leq n$. Since $\Delta=n-1$, we have $\chi_{=}^{\prime \prime}\left(H_{n}\right) \geq$ $\chi^{\prime \prime}\left(H_{n}\right) \geq \Delta+1(=n)$. Therefore $\chi^{\prime \prime}\left(H_{n}\right)=n$. Similarly this is true for all other values of $n \geq 4$. Hence $\chi_{=}^{\prime \prime}\left(H_{n}\right)=n$.

Figure 3: Helm H_{7}.

Algorithm : Equitable total coloring of Helm graph
Input: n, the number of vertices of H_{n}
Output: Equitably total colored H_{n}
Initialize H_{n} with $2 n-1$ vertices, the center vertices by v_{0}, the rim vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}$ and the pendant vertices by $u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}$.

Initialize the $3(n-1)$ edges, the adjacent edges on the center by $e_{1}, e_{2}, e_{3}, \ldots, e_{n-1}$, the adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$ and the pendant edges by $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots, e_{n-1}^{\prime \prime}$.

Let f be the coloring of vertices and edges in H_{n} such that $f: S \rightarrow$ $\{1,2, \ldots, n\}$ where $S=V\left(H_{n}\right) \cup E\left(H_{n}\right)$.

Apply the coloring rules of Theorem 3.3 for each of the following cases

$$
\text { for } i=0 \text { to } n-1
$$

$$
\{
$$

$$
\text { if }(i=0)
$$

$v_{i}=1$;
if $(i=1)$
$v_{i}=n-1$;
if $(i=2)$
$v_{i}=n$;
else
$v_{i}=i-1$;
\}
end for
for $i=1$ to $n-1$
\{
$u_{i}=i$;
$e_{i}=i+1 ;$
if $(i=n-1)$
$e_{i}^{\prime}=3$;
else
$e_{i}^{\prime}=i+3(\bmod n) ;$
if $(i=n-1)$
$e_{i}^{\prime \prime}=4$;

```
else
\(e_{i}^{\prime \prime}=i+4(\bmod n) ;\)
\}
end for
return \(f\);
```

Theorem 3.4. For Gear graph G_{n} with $n \geq 4, \chi_{=}^{\prime \prime}\left(G_{n}\right)=n$.
Proof. The Gear graph G_{n} consists of $2 n-1$ vertices and $3(n-1)$ edges. Let $V\left(G_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ and $E\left(G_{n}\right)=$ $\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n-2\right\} \bigcup\left\{e_{n-1}^{\prime \prime}\right\}$ where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1), e_{i}^{\prime}$ is the edge $v_{i} v_{i}^{\prime}(1 \leq i \leq n-1)$, $e_{i}^{\prime \prime}$ is the edge $v_{i}^{\prime} v_{i+1}(1 \leq i \leq n-2)$ and e_{n-1}^{\prime} is the edge $v_{n-1}^{\prime} v_{1}$.

Figure 4: Gear G_{7}.
Define a function $f: S \rightarrow C$ where $S=V\left(G_{n}\right) \cup E\left(G_{n}\right)$ and $C=$ $\{1,2, \ldots, n\}$. The coloring pattern is as follows:

$$
\begin{gathered}
f\left(v_{0}\right)=1 \\
f\left(v_{i}\right)=\left\{\begin{array}{l}
i+2(\bmod n), \text { for } 1 \leq i \leq n-2 \\
2, \text { for } i=n-1
\end{array}\right. \\
f\left(v_{i}^{\prime}\right)=i+1, \text { for } 1 \leq i \leq n-1
\end{gathered}
$$

$$
\begin{gathered}
f\left(e_{i}\right)=i+1, \text { for } 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
C\left(e_{i}\right)+2(\bmod n), \text { for } 1 \leq i \leq n-2 \\
1, \text { for } i=n-1
\end{array}\right. \\
f\left(e_{i}^{\prime \prime}\right)=i, 1 \leq i \leq n-1
\end{gathered}
$$

Based on the above procedure, the graph G_{n} is equitably total colored with n colors and by sustituting differnet values for n, it is inferred that no adjacent vertices and edges receives the same color. The color classes can be classified as $T\left(G_{n}\right)=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ and satisfies $\| T_{i}\left|-\left|T_{j}\right|\right| \leq 1$, for any $i \neq j$. For example consider the case $n=7$ (See Figure 4), for which $\left|T_{1}\right|=\left|T_{2}\right|=\left|T_{3}\right|=\left|T_{7}\right|=4$ and $\left|T_{4}\right|=\left|T_{5}\right|=\left|T_{6}\right|=5$. This implies $\left|\left|T_{i}\right|-\right| T_{j} \| \leq 1$, for $i \neq j$ and so it is equitably total colorable with n colors. Hence $\chi_{=}^{\prime \prime}\left(G_{n}\right) \leq n$. Further, since $\Delta=n-1$, we have $\chi_{=}^{\prime \prime}\left(G_{n}\right) \geq \chi^{\prime \prime}\left(G_{n}\right) \geq \Delta+1(=n)$. Therefore $\chi_{=}^{\prime \prime}\left(G_{n}\right)=n$.

Algorithm : Equitable edge coloring of Gear graph
Input: n, the number of vertices of G_{n}
Output: Equitably edge colored G_{n}
Initialize G_{n} with $2 n-1$ vertices, the center vertices by v_{0}, the rim vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}$ and $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n-1}^{\prime}$.

Initialize the $3(n-1)$ edges, the adjacent edges on the center by
$e_{1}, e_{2}, e_{3} \ldots, e_{n-1}$, the adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$ and $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots, e_{n-1}^{\prime \prime}$.

Let $f: S \rightarrow\{1,2, \ldots, n\}$ where $S=V\left(G_{n}\right) \cup E\left(G_{n}\right)$.
Apply the coloring rules of Theorem 3.4 for each of the following cases
for $i=0$ to n
\{
if $(i=0)$

```
vi}=1
if (i=n-1)
vi=2;
else
vi}=i+2
}
end for
for i=1 to n-1
{
vi}=i+1
e}=i=1
if (i=n-1)
e}\mp@subsup{i}{i}{\prime}=1
else
e}\mp@subsup{i}{=}{\prime}=[C(\mp@subsup{e}{i}{})+2](\operatorname{mod}n)
e
}
end for
return f;
```


Acknowledgement

The authors wish to thank the referees for various comments and suggestions that have resulted in the improvement of the paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, New York; The Macmillan Press Ltd, (1976).
[2] Frank Harary, Graph Theory, Narosa Publishing home, (1969).
[3] Gong Kun, Zhang Zhong Fu, Wang Jian Fang, Equitable Total Coloring of Some Join Graphs, Journal of Mathematical Research Exposition, 28(4), pp. 823-828, (2008).
[4] Hung-lin Fu, Some results on equalized total coloring, Congr. Numer. 102, pp. 111-119, (1994).
[5] MA Gang, MA Ming, The equitable total chromatic number of some join graphs, Open Journal of Applied Sciences, 2012 World Congress of Engineering and Technology, pp. 96-99, (2012).
[6] Ma Gang, Zhang Zhong-Fu, On the Equitable Total Coloring of Multiple Join-graph, Journal of Mathematical Research and Exposition, 27(2), pp. 351-354, (2007).
[7] W. Meyer, Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920922.
[8] A.Sanchez - Arroyo, Determining the total coloring number is NPHard, Discrete Math, 78, pp. 315-319, (1989).
[9] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz., 5, pp. 25-30, (1964).
[10] Wei-fan Wang, Equitable total coloring of graphs with maximum degree 3, Graphs Combin, 18, pp. 677-685, (2002).
[11] Tong Chunling, Lin Xiaohui, Yang Yuanshenga, Li Zhihe, Equitable total coloring of $C_{m} \square C_{n}$, Discrete Applied Mathematics, 157, pp. 596601, (2009).

Veninstine Vivik J.

Department of Mathematics
Karunya University
Coimbatore 641114
Tamil Nadu
India
e-mail : vivikjose@gmail.com
and

Girija G.

Department of Mathematics
Government Arts College
Coimbatore - 641018
Tamil Nadu
India
e-mail : prof_giri@yahoo.co.in

