
On some spaces of Lacunary I-convergent
sequences of interval numbers defined by

sequence of moduli

Mohd Shafiq
Govt. Degree College, India

and
Ayhan Esi

Adiyaman University, Turkey
Received : October 2016. Accepted : January 2017

Proyecciones Journal of Mathematics
Vol. 36, No 2, pp. 325-346, June 2017.
Universidad Católica del Norte
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Abstract
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1. Introduction and Preliminaries

Let N, R and C be the sets of all natural, real and complex numbers,
respectively.

Let ∞, c and c0 be denote the Banach spaces of bounded, convergent
and null sequences, respectively with norm

kxk = sup
k
| xk | .

We denote

ω = {x = (xk) : xk ∈ RorC},

the space of all real or complex sequences.

It is an admitted fact that the real and complex numbers are playing
a vital role in the world of mathematics. Many mathematical structures
have been constructed with the help of these numbers. In recent years,
since 1965 fuzzy numbers and interval numbers also managed their place in
the world of mathematics and credited into account some alike structures .
Interval arithmetic was first suggested by P.S.Dwyer [12] in 1951. Further
development of interval arithmetic as a formal system and evidence of its
value as a computational device was provided by R.E.Moore [22] in 1959
and Moore and Yang [23] and others and have developed applications to
differential equations.

Recently, Chiao [11] introduced sequences of interval numbers and de-
fined usual convergence of sequences of interval numbers. Şengönül and
Eryılmaz [34] introduced and studied bounded and convergent sequence
spaces of interval numbers and showed that these spaces are complete.

A set (closed interval) of real numbers x such that a ≤ x ≤ b is called
an interval number [11]. A real interval can also be considered as a set.
Thus, we can investigate some properties of interval numbers for instance,
arithmetic properties or analysis properties. Let us denote the set of all
real valued closed intervals by IR. Any element of IR is called a closed
interval and it is denoted by Ā = [xl, xr]. IR is a quasilinear space under
the algebraic operations and a partial order relation for IR found in [34]
and any subspace of IR is called quasilinear subspace (see [34]). Further
research on interval numbers was carried out by Esi and Braha [6], Esi and
Hazarika [8], Esi [1-9] and the references therein.

The set of all interval numbers IR is a complete metric space defined
by
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d(Ā1, Ā2) = max{| x1l − x2l |, | x1r − x2r |}, (see[23, 34]).(1.1)

where xlandxr be first and last points of Ā, respectively.
In a special case, Ā1 = [a, a], Ā2 = [b, b], we obtain the usual metric of

R with

d(Ā1, Ā2) =| a− b | .

Let us define transformation f from N to IR by k → f(k) = ¹A, ¹A =
(Āk). The function f is called sequence of interval numbers, where Āk is
the kth term of the sequence (Āk).

Let us denote the set of sequences of interval numbers with real terms
by

ω(¹A) = { ¹A = (Āk) : Āk ∈ IR}.(1.2)

The algebraic properties of ω(¹A) can be found in [11, 34].

The following definitions were given by Şengönül and Eryılmaz in [34].

A sequence ¹A = (Āk) = ([xkl , xkr ]) of interval numbers is said to be
convergent to an interval number Ā0 = [x0l , x0r ] if for each > 0, there
exists a positive integer n0 such that d(Āk, Ā0) < , for all k ≥ n0 and we
denote it as lim

k
Āk = Ā0.

Thus, lim
k
Āk = Ā0 ⇔ lim

k
xkl = x0land lim

k
xkr = x0r and it is said to

be Cauchy sequence of interval numbers if for each > 0, there exists a
positive integer k0 such that d(Āk, Ām) < , whenever k,m ≥ k0.

Let us denote the space of all convergent, null and bounded sequences of
interval numbers by C(¹A), C◦(¹A) and ∞(

¹A), respectively. The sets C(¹A),
C◦(¹A) and ∞(

¹A) are complete metric spaces with the metric

bd(Āk, B̄k) = sup
k
max{|xkl − ykl |, |xkr − ykr |}(see[34]).
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If we take B̄k = 0 in (3) then, the metric bd reduces to
bd(Āk, 0) = sup

k
max{|xkl |, |xkr |}.(1.4)

In this paper, we assume that a norm ||Āk|| of the sequence of interval
numbers (Āk) is the distance from (Āk) to 0 and satisfies the following
properties:
∀Āk, B̄k ∈ λ(¹A) and ∀α ∈ R
(N1)∀Āk ∈ λ(¹A)− {0}, ||Āk||λ(¹A) > 0,
(N2)||Āk||λ(¹A) = 0⇔ Āk = 0,

(N3)||Āk + B̄k||λ(¹A) ≤ ||Āk||λ(¹A) + ||B̄k||λ(¹A),
(N4)||αĀk||λ(¹A) = |α|||Āk||λ(¹A), where λ(

¹A) is a subset of ω(¹A).
Let ¹A = (Āk) = ([xkl , xkr ]) be the element of C(¹A), C◦(¹A) or ∞(

¹A).
Then, in the light of above discussion, the classes C(¹A), C◦(¹A) and ∞(

¹A)
of sequences of interval numbers are normed interval spaces normed by

k ¹A k= sup
k
max{| xkl |, | xkr |}(see[34]).(1.5)

Throughout, 0 = [0, 0] and Ī = [1, 1] represent zero and identity interval
numbers according to addition and multiplication, respectively.

As a generalisation of usual convergence for the sequences of real or
complex numbers, the concept of statistical convergent was first introduced
by Fast [13] and also independently by Buck [10] and Schoenberg [33]. Later
on, it was further investigated from a sequence space point of view and
linked with the Summability Theory by Fridy [15], Šalát [30], Tripathy [35]
and many others. The statistical convergence has been extended to interval
numbers by Esi and others as follows in [1-9].

Let us suppose that ¹A = (Āk) ∈ ∞(
¹A). If, for every > 0,

lim
n

1

n
|{k ∈ N :k Āk − Ā0 k≥ , k ≤ n}| = 0.(1.6)

Then, the sequence ¹A = (Āk) is said to be statistically convergent to
an interval number Ā0, where vertical lines denote the cardinality of the
enclosed set. That is, if δ(A( )) = 0, whereA( ) = {k ∈ N :k Āk−Ā0 k≥ }.

The notion of ideal convergence (I-convergence) was introduced and
studied by Kostyrko, Mačaj, Salǎt and Wilczyński [20, 21]. Later on, it
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was studied by Šalát, Tripathy and Ziman [31, 32], Esi and Hazarika [8],
Tripathy and Hazarika [36], Khan etal [16, 17], Mursaleen and Sunil [25]
and many others.

Definition 1.1. Let N be the set of natural numbers. Then, a family of
sets I ⊆ 2N(power set of N) is said to be an ideal, if
(i) I is additive. That is, ∀A,B ∈ I ⇒ A ∪B ∈ I,
(ii) I is hereditary. That is ∀A ∈ IandB ⊆ A⇒ B ∈ I.
A non-empty family of sets £(I) ⊆ 2N is said to be filter on N, if and only
if
(i) Φ /∈ £(I),
(ii) ∀A,B ∈ £(I) we have A ∩B ∈ £(I),
(iii) ∀A ∈ £(I) and A ⊆ B ⇒ B ∈ £(I).
An Ideal I ⊆ 2N is called non-trivial if I 6= 2N.
A non-trivial ideal I ⊆ 2N is called admissible if

{{x} : x ∈ N} ⊆ I.

Let us suppose that I be an ideal. Then, a sequence ¹A = (Āk) ∈ ∞(
¹A) ⊂

ω(¹A)
(i) is said to be I-convergent to an interval number Ā0 if for every > 0,

{k ∈ N :k Āk − Ā0 k≥ } ∈ I.

In this case, we write I − lim Āk = Ā0. If Ā0 = Ō.
Then, the sequence ¹A = (Āk) ∈ ∞(

¹A) is said to be I-null. In this case, we
write I − lim Āk = Ō.
(ii) is said to be I-Cauchy, if for every > 0, there exists a number m =
m( ) such that

{k ∈ N :k Āk − Ām k≥ } ∈ I.

(iii) is said to be I-bounded, if there exists some M > 0 such that

{k ∈N :k Āk k≥M} ∈ I.

We know that for each ideal I, there is a filter £(I) corresponding to I.
That is, £(I) = {K ⊆ N : Kc ∈ I}, where Kc = N \K.

Definition 1.2. A sequence space λ(¹A) of interval numbers is
(iv) said to be solid(normal), if (αkĀk) ∈ λ(¹A), whenever (Āk) ∈ λ(¹A) and
for any sequence (αk) of scalars with | αk |≤ 1, for all k ∈ N,

(v) said to be symmetric, if (Āπ(k)) ∈ λ(¹A), whenever Āk ∈ λ(¹A), where π
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is a permutation on N,
(vi) said to be sequence algebra, if (Āk) ∗ (B̄k) = (Āk.B̄k) ∈ λ(¹A) whenever
(Āk), (B̄k) ∈ λ(¹A),
(vii) said to be convergence free, if (B̄k) ∈ λ(¹A) whenever (Āk) ∈ λ(¹A) and
Āk = Ō implies B̄k = Ō, for all k.

Definition 1.3. Let K = {k1 < k2 < k3...} ⊂ N. The K-step space of the
λ(¹A) is a sequence space µλ(

¹A)
K = {(Ākn) ∈ ω(¹A) : (Āk) ∈ λ(¹A)}.

Definition 1.4. A canonical pre-image of a sequence (Ākn) ∈ µ
λ(¹A)
K is a

sequence

(B̄k) ∈ ω(¹A) defined by

B̄k =

(
Āk, if k ∈ K,
Ō, otherwise.

A canonical preimage of a step space µ
λ(¹A)
K is a set of canonical preimages

of all elements in µ
λ(¹A)
K . That is, ¹B is in the canonical preimage of µλ(

¹A)
K

iff ¹B is the canonical preimage of some ¹A ∈ µ
λ(¹A)
K .

Definition 1.5. A sequence space λ(¹A) is said to be monotone, if it con-
tains the canonical preimages of its step space.

Definition 1.6. A function f : [0,∞) −→ [0,∞) is called a modulus
function if

(1) f(t) = 0 if and only if t = 0,
f(t+ u) ≤ f(t) + f(u) for all t, u ≥ 0,
(3) f is increasing, and
(4) f is continuous from the right at zero.
A modulus function f is said to satisfy ∆2 − Condition for all values of u
if there exists a constant K > 0 such that f(Lu) ≤ KLf(u) for all values
of L > 1.

The idea of modulus function was introduced by Nakano in 1953, (See [26],
Nakano, 1953).

Ruckle [27-29] used the idea of a modulus function f to construct the se-
quence space

X(f) =
n
x = (xk) :

∞X
k=1

f(|xk|) <∞
o
=
n
x = xk :

³
f(| xk |)

´
∈ X

o
.(1.7)
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After then, E.Kolk [18-19] gave an extension of X(f) by considering a
sequence of modulii F = (fk) and defined the sequence space

X(F) =
n
x = (xk) :

³
fk(|xk|)

´
∈ X

o
.(1.8)

Mursaleen and Noman [24] introduced the notion of λ-convergent and λ-
bounded sequences. We extended this concept to the sequence of interval
numbers as follows.
Let λ = (λk)

∞
k=1 be a strictly increasing sequence of positive real numbers

tending to infinity. That is,

0 < λ0 < λ1 < λ2 < λ3..., λk →∞ask →∞.(1.9)

The sequence ¹A = (Āk) ∈ ∞(
¹A) is λ-convergent to an interval number Ā0,

called the λ-limit of ¹A, if Λm(¹A)→ Ā0, as m→∞, where

Λm(
¹A) = 1

λm

mX
k=1

(λk − λk−1)Āk, (k ∈ N).

Here and in the sequel, we shall use the convention that any term with a
negative subscript is equal to naught. For example, λ−1 = 0.

In particular, ¹A = (Āk) ∈ ∞(
¹A) is said to be λ-null, if Λm(

¹A) → 0, as
m→∞.

The sequence ¹A = (Āk) ∈ ∞(
¹A) is λ-bounded, if sup

m
k Λm(¹A) k< ∞.

It can be seen that if lim
m

Ām = Ā in the ordinary sense of convergence of

interval numbers, then

lim
m

Ã
1

λm

Ã
mX
k=1

(λk − λk−1) k Āk − Ā k
!!

= 0.(1.10)

This implies that

lim
m
k Λm(¹A)− Ā k= lim

m
k 1

λm

mX
k=1

(λk − λk−1)(Āk − Ā) k= 0.(1.11)

which yields that lim
m
Λm(

¹A) = Ā and hence ¹A = (Āk) ∈ ∞(
¹A) is λ-

convergent to Ā.
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Let us denote the classes of I-convergent, I-null, bounded I-convergent and
bounded I-null sequences of interval numbers with CI(¹A), CI◦(¹A), MI

C(
¹A)

andMI
C◦(
¹A), respectively.

By a lacunary sequence we mean an increasing integer sequence θ = {kr}
such that k0 = 0 and hr := kr − kr−1 → ∞ as r → ∞. Throughout this
paper the intervals determined by θ will be denoted by Ir := (kr−1, kr) and
the ratio kr

kr−1
will be abbreviated by qr

The space of lacunary strongly convergent sequence Nθ was defined by Freed-
man etal[14] as:

Nθ =

(
x = xk : lim

r

1

hr

X
k∈Ir

| xk − | for some }

We need the following popular inequalities throughout the paper.
Let p = (pk) be the bounded sequence of positive reals numbers. For any
complex λ, whenever H = sup

k
(pk) <∞, we have

| λ |pk≤ max(1, | λ |H)

Also, whenever H = sup
k
(pk), we have

| ak + bk |pk≤ C(| ak |pk + | bk |pk).

where D = max(1, 2H−1).

For any modulus function f , we have the inequalities

| f(x)− f(y) |≤ f(x− y)

and

f(nx) ≤ nf(x), for allx, y ∈ [0,∞].

Now, we give some important Lemmas.
Lemma.1.7. Every solid space is monotone.
Lemma.1.8. Let K ∈ £(I) and M ⊆ N. If M /∈ I, then M ∩ K /∈ I,
where £(I) ⊆ 2N filter on N.
Lemma.1.9. If I ⊆ 2N and M ⊆ N. If M /∈ I, then M ∩N /∈ I.

Let us give a most important definitions for this paper.
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Definition 1.10 (see [37]). Let X̄ be a quasilinear space of interval num-
bers. A function g : X̄ −→ R is called paranorm on X̄, if for all A,B ∈ X̄,
(P1)g(A) = 0ifA = 0̄,
(P2)g(A) ≥ 0,
(P3)g(−A) = g(A),
(P4)g(A+B) ≤ g(A) + g(B),
(P5)if(λn) is a sequence of scalars with λn → λ (n→∞) and (An), A0 ∈ X̄
with g(An)→ g(A0) (n→∞), then g(λnAn)→ g(λA0) (n→∞),
(P6) If A ≤ B, then g(A) ≤ g(B).

Definition 1.11 (see [37]). Suppose that X is a quasilinear space and
Y ⊂ X. Y is called a subspace of X whenever Y is a quasilinear space with
the same partial ordering and same operations on X.

Theorem 1.12 (see [37]). Y is a subspace of a quasilinear space X if and
only if for every x, y ∈ Y andα, β ∈ R, αx+ βy ∈ Y.

In this article, we introduce and study the following classes of sequences;
CI(¹A, θ,Λ,F , p)

=

(
¹A = (Āk) ∈ ∞(

¹A) : {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A)−Ā k

´pk ≥ } ∈ I, for someĀ

)
(1.12)

CI0(¹A, θ,Λ,F , p)

=

(
¹A = (Āk) ∈ ∞(

¹A) : {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A) k

´pk ≥ } ∈ I

)
;

(1.13)

I
∞(
¹A, θ,Λ,F , p)

=

(
¹A = (Āk) ∈ ∞(

¹A) : ∃K > 0s.t.{r ∈ N :
1

hr

X
kr

fk
³
k Λk(¹A) k

´pk ≥ K} ∈ I

)
;

(1.14)
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∞(
¹A, θ,Λ,F , p)

=

(
¹A = (Āk) ∈ ∞(

¹A) : sup
r

1

hr

X
k∈Ir

fk
³
k Λk(¹A) k

´pk
<∞

)
.(1.15)

We also denote

MI
C(
¹A, θ,Λ,F , p) = ∞(

¹A, θ,Λ,F , p) ∩ CI(¹A, θ,Λ,F , p)

and
MI

C◦(
¹A, θ,Λ,F , p) = ∞(

¹A, θ,Λ,F , p) ∩ CI0(¹A, θ.Λ,F , p), where p = (pk)
is a bounded sequence of positive real numbers, F = (fk) is a sequence

of modulus functions, θ = {kr} is a lacunary sequence and ¹A = (Āk) ∈
∞(
¹A) ⊂ ω(¹A) is a bounded sequence of interval numbers.

2. Main Results

Theorem 2.1. Let F = (fk) be a sequence of modulus functions and
p = (pk) be the bounded sequence of positive real numbers.Then, the sets

CI(¹A, θ,Λ,F , p), CI0(¹A, θ,Λ,F , p),MI
C(
¹A, θ,Λ,F , p) andMI

C◦(
¹A, θ,Λ,F , p)

are quasilinear spaces over the field of real numbers.

Proof. We shall prove the result for the space CI(¹A, θ,Λ,F , p). Rests will
follow similarly.
For, let ¹A = (Āk),

¹B = (B̄k) ∈ CI(¹A, θ,Λ,F , p) and α, β be scalars. Then,
there exist positive integersMα and Nβ such that | α |≤Mα and | β |≤ Nβ.

Now, since ¹A = (Āk),
¹B = (B̄k) ∈ CI(¹A, θ,Λ,F , p), then, there exists

Ā, B̄ ∈ IR such that the sets

A1 = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A)− Ā k

´pk ≥ } ∈ I(2.1)

and

A2 = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹B)− B̄ k

´pk ≥ } ∈ I.(2.2)

Since, each fk, k ∈ N is modulus function, we have,

1

hr

X
k∈Ir

fk
³
k Λk(α¹A+ β¹B)− (αĀ+ βĀ) k

´pk
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≤ D(Mα)
H × 1

hr

X
k∈Ir

fk
³
k Λk(¹A)− Ā k

´pk

+D(Nβ)
H × 1

hr

X
k∈Ir

fk
³
k Λk(¹B)− B̄ k

´pk
(2.3)

The above inequality further implies that(
r ∈ N :

1

hr

X
k∈Ir

fk
³
k Λk(α¹A+ β¹B)− (αĀ+ βĀ) k

´pk ≥ )

⊆
(
r ∈ N :

1

hr

X
k∈Ir

fk
³
k Λk(¹A)− Ā k

´pk ≥ )

∪
(
r ∈N :

1

hr

X
k∈Ir

fk
³
k Λk(¹B)− B̄ k

´pk ≥ )

= A2 ∪A2 ∈ I

The result follows from the above inclusion and the definition of quasilinear
space.

Theorem 2.2. Let F = (fk) be a sequence of modulus functions and p =
(pk) be the bounded sequence of positive real numbers. Then, the classes of

sequencesMI
C(
¹A, θ,Λ,F , p) andMI

C◦(
¹A, θ,Λ,F , p) are paranormed spaces,

paranormed by

g(¹A) = g((Āk)) = sup
r

1

hr

X
k∈Ir

fk
³
k Λ̄k(Ak) k

´ pk
M ,whereM = max{1, sup

k
pk}.

Proof. Let ¹A = (Āk),
¹B = (B̄k) ∈MI

C(
¹A, θ,Λ,F , p).

(P1) It is Clear that g(
¹A) = 0, if ¹A = θ̄.

(P2) It is also obvious that g(
¹A) ≥ 0.

(P3) g(
¹A) = g(−¹A) is obvious.

(P4) Since
pk
M ≤ 1 and M > 1, using Minkowski’s inequality, we have

g(¹A+ ¹B) = g(Āk + B̄k)
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= sup
r

1

hr

X
k∈Ir

fk
³
k Λk(Āk + B̄k)) k

´ pk
M

= sup
r

1

hr

X
k∈Ir

fk
³
k Λk(Āk) + Λk(B̄k)) k

´ pk
M

≤ sup
r

1

hr

X
k∈Ir

fk
³
k Λk(Āk) k

pk
M + k Λk(B̄k)) k

´ pk
M

≤ sup
r

1

hr

X
k∈Ir

fk
³
k Λk(Āk) k

´ pk
M

+sup
r

1

hr

X
k∈Ir

fk
³
k Λk(B̄k)

´
k
pk
M

= g(¹A) + g(¹B).

Therefore, g(¹A+ ¹B) ≤ g(¹A) + g(¹B), for all ¹A, ¹B ∈MI
C(
¹A, θ,Λ,F , p).

(P5) Let (λk) be a sequence of scalars with (λk)→ λ(k →∞) and
(Āk), Ā0 ∈MI

C(
¹A, θ,Λ,F , p) such that

Āk → Ā0(k →∞),

in the sense that
g(Āk − Ā0)→ 0(k →∞).

Note that g(λ¹A) ≤ max{1, | λ |}g(¹A).
Then, since the inequality

g(Āk) ≤ g(Āk − Ā0) + g(Ā0)

holds by subadditivity of g, the sequence {g(Āk)} is bounded.
Therefore,

| g(λkĀk)− g(λĀ0) |=| g(λkĀk)− g(λĀk) + g(λĀk)− g(λĀ0) |

≤| λk − λ |
pk
M | g

³
Āk) | + | λ |

pk
M | g(Āk)− g(Ā0) |→ 0

as (k →∞). That is to say that scalar multiplication is continuous.
(P6). Since each fk, k ∈ N is an increasing function, it is clear that

g(¹A) ≤ g(¹B), if ¹A ⊆ ¹B.
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HenceMI
C(
¹A, θ,Λ,F , p) is a paranormed space.

ForMI
C◦(
¹A, θ,Λ,F , p), the result is similar.

Theorem 2.3. The setMI
C(
¹A, θ,Λ,F , p) is closed subspace of ∞(¹A, θ,Λ,F , p).

Proof. Let ¹A(n) = (Ā(n)k ) be a Cauchy sequence inMI
C(
¹A, θ,Λ,F , p) such

that

Ā
(n)
k → Ā.

We show that Ā ∈MI
C(
¹A, θ,Λ,F , p).

Since ¹A(n) = (Ā(n)k ) ∈MI
C(
¹A, θ,Λ,F , p). Then, there exists Ān such that

{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Ān k

´pk ≥ } ∈ I(2.4)

We need to show that
(1) (Ān) converges to Ā0.

(2) If U = {r ∈N : 1
hr

P
k∈Ir

fk
³
k Λk(¹A)− Ā0 k

´pk
< }, then U c ∈ I.

(1) Since ¹A(n) = (Ā
(n)
k ) is Cauchy sequence in MI

C(
¹A, θ,Λ,F , p) ⇒ for a

given > 0, there exists k0 ∈ N such that

sup
r

1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Λk(¹A(q)) k

´ pk
M <

3
, for alln, q ≥ k0

where M = max{1, sup
k

pk}.
For > 0, we have

Bnq = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Λk(¹A(q)) k

´pk
< (

3
)M},

Bq = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(q))− Āq k

´pk
< (

3
)M},

Bn =

(
r ∈ N :

1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Ān k

´pk
< (

3
)M
)
.

Then, Bc
nq, B

c
q, B

c
n ∈ I
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Let Bc = Bc
nq ∪Bc

q ∪Bc
n, where

B = {r ∈N :
1

hr

X
k∈Ir

fk
³
k Āq − Ān k

´pk
< }.

Then, Bc ∈ I.

We choose k0 ∈ Bc. Then, for each n, q ≥ k0, we haven
r ∈ N : 1

hr

P
k∈Ir

fk
³
k Āq − Ān k

´pk
<

o

⊇
"
{r ∈ N :

1

hr

X
k∈Ir

fk
³
k Āq − Λk(¹A(q)) k

´pk
< (

3
)M}

∩{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Λk(¹A(q)) k

´pk
< (

3
)M}

∩{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(n))− Ān k

´pk
< (

3
)M}

#
.

Then, (Ān) is a Cauchy sequence of interval numbers, so there exists some
interval number Ā0 such that Ān → Ā0 as n→∞.
(2) Let 0 < δ < 1 be given. Then, we show that, if

U = {r ∈N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A)− Ā0 k

´pk
< δ},

then, U c ∈ I.

Since ¹A(n) = (Ā(n)k )→ Ā then, there exists q0 ∈N such that

P = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(q0))− Λk(¹A) k

´pk
< (

δ

3D
)M}(2.5)

implies P c ∈ I, where

D = max{1, 2H−1},H = sup
k

pk ≥ 0.

The number q0 can be chosen that together with (20), we have

Q = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(Āq0)− Ā0 k

´pk
< (

δ

3D
)M}
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such that Qc ∈ I.

Since {r ∈ N : 1
hr

P
k∈Ir

fk
³
k Λk(¹A(q0))− Λk(Āq0) k

´pk ≥ δ} ∈ I. Then, we

have a subset S of N such that Sc ∈ I, where

S = {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(q0))− Λk(Āq0) k

´pk
< (

δ

3D
)M}.

Let U c = P c ∪Qc ∪ Sc, where

U = {r ∈ N : 1
hr

P
k∈Ir

fk
³
k Λk(¹A)− Ā0 k

´pk
< δ}.

Therefore, for each k ∈ U c, we have

{r ∈ N : 1
hr

P
k∈Ir

fk
³
k Λk(¹A)− Ā0 k

´pk
< δ}

⊇ [{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(q0))− Λk(¹A) k

´pk
< (

δ

3D
)M}

∩{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(¹A(q0))− Λk(Āq0) k

´pk
< (

δ

3D
)M}

∩ {r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(Āq0)− Ā0 k

´pk
< (

δ

3D
)M}].(2.6)

Then, the result follows from (21).

Since the inclusionsMI
C(
¹A, θ,Λ,F , p) ⊂ ∞(

¹A, θ,Λ,F , p) and
MI

C◦(
¹A, θ,Λ,F , p) ⊂ ∞(

¹A, θ,Λ,F , p) are strict so in view of Theorem (2.3)
we have the following result.

Theorem 2.4. The spaces MI
C(
¹A, θ,Λ,F , p) and MI

C◦(
¹A, θ,Λ,F , p) are

nowhere dense subsets of ∞(
¹A, θ,Λ,F , p).

Theorem 2.5. The spaces CI0(¹A, θ,Λ,F , p) and MI
C◦(
¹A, θ,Λ,F , p) are

both solid and monotone.

Proof. We shall prove the result for CI0(¹A, θ,Λ,F , p). ForMI
C◦(
¹A, θ,Λ,F , p),

the result follows similarly.

For, let ¹A = (Āk) ∈ CI0(¹A, θ,Λ,F , p) and (αk) be a sequence of scalars with
| αk |≤ 1, for all k ∈ N.

Since | αk |pk≤ max{1, | αk |G} ≤ 1, for all k ∈ N, we have
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1

hr

X
k∈Ir

fk
³
k αkΛk(Āk) k

´pk ≤ 1

hr

X
k∈Ir

fk
³
k Λk(Āk) k

´pk
, for all k ∈ N.

which further implies that

{r ∈ N :
1

hr

X
k∈Ir

fk
³
k Λk(Āk) k

´pk ≥ } ⊇

{r ∈ N :
1

hr

X
k∈Ir

fk
³
k αkΛk(Āk) k

´pk ≥ }.

Thus, αk(Āk) ∈ CI0(¹A, θ,Λ,F , p).
Therefore, the space CI0(¹A, θ,Λ,F , p) is solid and hence by lemma (1.7), it
is monotone.

Theorem 2.6. Let F = (fk) and G = (gk) be two sequences of modulus
functions and for each k ∈ N, (fk) and (gk) satisfying ∆2 − Condition and
p = (pk) ∈ ∞ be a bounded sequence of positive real numbers. Then,

(a) X (¹A, θ,Λ,G, p) ⊆ X (¹A, θ,Λ,F ◦ G, p),
(b) X (¹A, θ,Λ,F , p) ∩ (¹A, θ,Λ,G, p) ⊆ X (¹A, θ,Λ,F + G, p),
for X= CI , CI◦ ,MI

C andMI
C◦

Proof. (a). Let ¹A = (Āk) ∈ CI◦(¹A, θ,Λ,G, p) be any element.
Then, the set (

r ∈ N :
1

hr

X
k∈Ir

gk

µ
k Λk(Āk) k

¶pk
≥

)
∈ I.(2.7)

Let > 0 and choose δ with 0 < δ < 1 such that fk(t) < , 0 ≤ t ≤ δ.
Let us denote

B̄k =
1

hr

X
k∈Ir

gk

µ
k Λk(Āk) k

¶pk
(2.8)

and consider

lim
k
fk
³
B̄k

´
= lim

B̄k≤δ,k∈N
fk
³
B̄k

´
+ lim

B̄k>δ,k∈N
fk
³
B̄k

´
.

Now, since fkfor each k ∈ N is an modulus function, we have

lim
B̄k≤δ,k∈N

fk
³
B̄k

´
≤ fk

³
2
´

lim
B̄k≤δ,k∈N

(B̄k).(2.9)
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For B̄k > δ, we have

B̄k <
B̄k

δ
< 1 +

B̄k

δ
.

Now, since each fk is non-decreasing and modulus, it follows that

fk(B̄k) < fk(1 +
B̄k

δ
) <

1

2
fk(2) +

1

2
fk(
2B̄k

δ
).

Again, since each fk, k ∈N satisfies ∆2 − Condition, we have

fk
³
B̄k

´
<
1

2
K
(B̄k)

δ
fk
³
2
´
+
1

2
K
(B̄k)

δ
fk(2).

Thus, fk
³
B̄k

´
< K (B̄k)

δ fk
³
2
´
.

Hence,

lim
B̄k>δ,k∈N

fk
³
B̄k

´
≤ max{1, (Kδ−1fk

³
2
´
)H} lim

B̄k>δ,k∈N
(B̄k),H = max{1, sup

k
pk}.

(2.10)

Therefore, from (23), (24) and (25), we have
¹A = (Āk) ∈ CI◦(¹A, θ,Λ,F ◦ G, p).
Thus, CI◦(¹A, θ,Λ,G, p) ⊆ CI◦(¹A, θ,Λ,F ◦ G, p). Hence, X (¹A, θ,Λ,G, p) ⊆
X (¹A, θ,Λ,F ◦ G, p) for X= CI◦ .
For X= CI ,MI

C andMI
C◦ the inclusions can be established similarly.

(b). Let ¹A = (Āk) ∈ CI◦(¹A, θ,Λ,F , p)∩CI◦(¹A, θ,Λ,G, p). Let > 0 be given.
Then, the sets(

r ∈ N :
1

hr

X
k∈Ir

fk

µ
k Λk(Āk) k

¶pk
≥

)
∈ I(2.11)

and (
r ∈ N :

1

hr

X
k∈Ir

gk

µ
k Λk(Āk) k

¶pk
≥

)
∈ I.(2.12)

Therefore, from (26) and (27), we have(
r ∈ N :

1

hr

X
k∈Ir

(fk + gk)

µ
k Λk(Āk) k

¶pk
≥

)
∈ I.

Thus, ¹A = (Āk) ∈ CI◦(¹A, θ,Λ,F + G, p)
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Hence, CI◦(¹A, θ,Λ,F , p) ∩ CI◦(¹A, θ,Λ,G, p) ⊆ CI◦(¹A, θ,Λ,F + G, p).
For X= CI ,MI

C andMI
C◦ , the inclusions are similar.

For gk(x) = x and fk(x) = f(x), ∀ x ∈ [0,∞), we have the following
corollary.

Corollary 2.7. X (¹A, θ,Λ, p) ⊆ X (¹A, θ,Λ,F , p), for X= CI , CI◦ , MI
C and

MI
C◦ .

Theorem 2.8. Let F = (fk) be a sequence of modulus functions. Then,

the inclusions CI0(¹A, θ,Λ,F , p) ⊂ CI(¹A, θ,Λ,F , p) ⊂ I
∞(
¹A, θ,Λ,F , p) hold.

Proof. Let ¹A = (Āk) ∈ CI(¹A, θ,Λ,G, p) be any element.
Then, there exists some interval number Ā such that the setn

r ∈ N :
1

hr

X
k∈Ir

fk(k Λk(Āk)− Ā k)pk ≥
o
∈ I.

Since, each fk is modulus function for all k ∈ N, we have

1

hr

X
k∈Ir

fk(k Λk(Āk) k)pk

=
1

hr

X
k∈Ir

fk(k Λk(Āk)− Ā+ Ā k)pk

≤ 1

hr

X
k∈Ir

fk(k Λk(Āk)− Ā k)pk + 1

hr

X
k∈Ir

fk(k Ā k)pk .

Taking supremum over r on both sides, we get ¹A = (Āk) ∈ I
∞(
¹A, θ,Λ,F , p).

The inclusion CI0(¹A, θ,Λ,F , p) ⊂ CI(¹A, θ,Λ,F , p) is obvious.

Hence CI0(¹A, θ,Λ,F , p) ⊂ CI(¹A, θ,Λ,F , p) ⊂ I
∞(
¹A, θ,Λ,F , p).

Theorem 2.9. The spaces CI0(¹A, θ,Λ,F , p) and CI(¹A, θ,Λ,F , p) are se-
quence algebra.

Proof. Let ¹A = (Āk),
¹B = (B̄k) ∈ CI0(¹A, θ,Λ,F , p). Then, the sets(

r ∈ N :
1

hr

X
k∈Ir

fk

µ
k Λk(Āk) k

¶pk
≥

)
∈ I(2.13)
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and (
r ∈ N :

1

hr

X
k∈Ir

fk

µ
k Λk(B̄k) k

¶pk
≥

)
∈ I.

Therefore, from (28) and (29), we have(
r ∈ N :

1

hr

X
k∈Ir

fk

µ
k Λk(Āk.B̄k) k

¶pk
≥

)
∈ I.

Thus, ¹A.¹B ∈ CI0(¹A, θ,Λ,F , p).Hence, CI0(¹A, θ,Λ,F , p) is a sequence algebra.
Similarly, we can prove that CI(¹A, θ,Λ,F , p) is a sequence algebra.
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