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Abstract

For an edge xy in a connected graph G of order p > 3, a set S C V(G) is an
xy-monophonic set of G if each vertex v € V(G) lies on an © — uw monophonic path
or a y — u monophonic path for some element u in S. The minimum cardinality of
an xy-monophonic set of G is defined as the xy-monophonic number of G, denoted by
May(G). An zy-monophonic set of cardinality mqy(G) is called a myy-set of G. We
determine bounds for it and find the same for special classes of graphs. It is shown that
for any three positive integers v, d and n > 2 with 2 < r < d, there exists a connected
graph G with monophonic radius r, monophonic diameter d and mq,(G) = n for some
edge xy in G.

Key Words : Monophonic path, vertex monophonic number, edge fixred monophonic
number.

Mathematics Subject Classification : 05C12.


rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172017000300363

http://dx.doi.org/10.4067/S0716-09172017000300363

364 P. Titus and S. Eldin Vanaja

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and ¢ respectively. For basic
graph theoretic terminology we refer to [1,2]. For vertices  and y in a connected graph G,
the distance d(z,y) is the length of a shortest z — y path in G. An = — y path of length
d(z,y) is called an x —y geodesic. The neighborhood of a vertex v is the set N(v) consisting
of all vertices u which are adjacent with v. A vertex v is a simplicial vertex if the subgraph
induced by its neighbors is complete. A non-separable graph is connected, non-trivial, and
has no cut-vertices. A block of a graph is a maximal non-separable subgraph. A connected
block graph is a connected graph in which each of its blocks is complete. A caterpillar is a
tree for which the removal of all the end vertices gives a path.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P
is called monophonic if it is a chordless path. The closed intervel I,,[z,y] consists of all
vertices lying on some x —y monophonic of G. For any two vertices v and v in a connected
graph G, the monophonic distance dy,(u,v) from u to v is defined as the length of a longest
u — v monophonic path in G. The monophonic eccentricity e, (v) of a vertex v in G is
em(v) = max {dy,(v,u) : uw € V(G)}. The monophonic radius, rad,,(G) of G is rad,, {G}
= min{emn(v) : v € V(G)} and the monophonic diameter, diam,, {G} of G is diam, {G}
= maz {en(v) : v € V(G)}. The monophonic distance was introduced in [3] and further
studied in [4]. The concept of vertex monophonic number was introduced by Santhakumaran
and Titus [5]. A set S of vertices of G is an a-monophonic set if each vertex v of G lies
on an x — y monophonic path in G for some element y in .S. The minimum cardinality of
an z-monophonic set of G is defined as the z-monophonic number of G and is denoted by
mg(G) or simply m,. An z-monophonic set of cardinality m,(G) is called a m,-set of G.
The following theorems will be used in the sequel.

Theorem 1.1. [2] Let v be a vertex of a connected graph G. The following statements are
equivalent:

i) v is a cut-vertex of G.
ii) There exist vertices u and w distinct from v such that v is on every u — w path.

iii) There exists a partition of the set of vertices V' — {v} into subsets U and W such that
for any vertices u € U and w € W, the vertex v is on every u — w path.

Theorem 1.2. [2] Every non-trivial connected graph has at least two vertices which are
not cut-vertices.

Theorem 1.3. [2] Let G be a connected graph with at least three vertices. The following
statements are equivalent:

i) G is a block.

ii) Every two vertices of G lie on a common cycle.

Throughout this paper G denotes a connected graph with at least three vertices.
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2. Edge fixed monophonic number

Definition 2.1. Let e = xy be any edge of a connected graph G of order at least three. A
set S of vertices of G is an xy-monophonic set if every vertex of G lies on either an x — u
monophonic path or a y —u monophonic path in G for some element v in S. The minimum
cardinality of an xy-monophonic set of G is defined as the xy-monophonic number of G and
is denoted by mgy(G) or me(G). An xy-monophonic set of cardinality m.,(G) is called a
Myy-set or me-set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimum edge fixed monophonic
sets and the edge fixed monophonic numbers are given in Table 2.1.

[RX]
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Figure 2.1 : &G

Theorem 2.3. For any edge xy in a connected graph G of order at least three, the vertices
x and y do not belong to any minimum xy-monophonic set of G.

Proof.  Suppose that x belongs to a minimum zy-monophonic set, say S, of G. Since
G is a connected graph with at least three vertices and zy in an edge, it follows from the
definition of an xy-monophonic set that S contains a vertex v different from z and y. Since
the vertex z lies on every & — v monophonic path in G, it follows that T'= S — {z} is an
zy-monophonic set of GG, which is a contradiction to S a minimum zy-monophonic set of
G. Similarly, y does not belong to any minimum xy-monophonic set of G. O
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Table 2.1: The Edge Fixed Monophonic Number of a Graph

FEdge minimum e-monophonic
e e-monophonic sets number
V1V2 {va,v6}, {vs,v6} 2
VU3 {U4,U6}, {1)5,1)6} 2
V3V4 {’1)2, UG} 2
V45 {va, vg} 2
V51 {vo,v6} 2
V1Vg {ve,v4} 2
vivs | {va,ve,va}, {v2, v6,v5} 3

Theorem 2.4. Let xy be any edge of a connected graph G of order at least three. Then

i) every simplicial vertex of G other than the vertices x and y (whether x or y is simplicial
or not) belongs to every m.,-set.

ii) no cut-vertex of G belongs to any my,-set.

Proof. (i) By Theorem 2.3, the vertices  and y do not belong to any mgy-set. So, let
u # x,y be a simplicial vertex of G. Let S be a myy-set of G such that u ¢ S. Then u is an
internal vertex of either an x — v monophonic path or a y — v monophonic path for some
element v in S. Without loss of generality, let P be an x — v monophonic path with u is an
internal vertex. Then both the neighbors of © on P are not adjacent and hence u is not a
simplicial vertex, which is a contradiction.

(ii) Let v be a cut-vertex of G. Then by Theorem 1.1, there exists a partition of the set of
vertices V' — {v} into subsets U and W such that for any vertex v € U and w € W, the
vertex v lies on every u — w path. Let S be a mgy-set of G. We consider three cases.

Case (i): Both z and y belong to U. Suppose that SNW = (. Let w; € W. Since
S is an zy-monophonic set, there exists an element z in S such that w; lies on either an
x — z monophonic path or a y — z monophonic path in G. Suppose that w; lies on an x — z
monophonic path P : z = 29, 21,...,w1,...,2, = zin G. Then the x —w; subpath of P and
wy — z subpath of P both contain v so that P is not a path in G, which is a contradiction.
Hence SNW # (). Let wy € SNW. Then v is an internal vertex of any x — ws monophonic
path and v is also an internal vertex of any y — ws monophonic path. If v € S, then let
S" =S — {v}. Tt is clear that every vertex that lies on an x — v monophonic path also lies
on an z — wy monophonic path. Hence it follows that S’ is an zy-monophonic set of G,
which is a contradiction to .S a minimum zy-monophonic set of G. Thus v does not belong
to any minimum zy-monophonic set of G.

Case (ii): Both = and y belong to W. It is simillar to Case (i).

Case (iii): Either 2 = v or y = v. By Theorem 2.3, v does not belong to any mgy-set. O

Corollary 2.5. Let T' be a tree with k end vertices. Then mg,(T) =k — 1 or k according
as xy is an end edge or cut-edge.
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Proof. This follows from Theorem 2.4. O

Corollary 2.6. Let Ki,(n > 2) be a star. Then mgyy(Ki,) = n—1 for any edge xy in
K.

Corollary 2.7. Let G be a complete graph K,(p > 3). Then m,(G) = p — 2 for any edge
zy in G.

Theorem 2.8. For any edge xy in the cube Qn(n > 3), mgy(Qn) = 1.

Proof. Let e = xy be an edge in @, and let x = (a1, a2, ...,ay,), where a; € {0,1}. Let

' = (a}, db,...,al) be another vertex of @, such that a; is the compliment of a;. Let u

’r'n
be any vertex in Q. For convenience, let u = (a1,a,as,...,a,). Then u lies on an = — 2/
] . — / / / !/ !/
monophonic path P : x = (a1,a2,...,a,), (a1,a5,a3,...,a,),...,(a}, a5, ... al,_1,a,), (af,

ay, ...,a,) ='. Hence {2’} is an xy-monophonic set of @, and so M4y (Qn) =1. O

Theorem 2.9. i) For any edge xy in the wheel W, = K1 + Cp,_1(n > 5),
May(Wh) = 1.

ii) For any edge xy in the complete bipartite graph K, ,(1 < m < n),
n—1 ifm=1
May(Kmn) =4 1 ifm=2
2 ifm > 3.

Proof. (i) Let zy be an edge in W,. Then either x or y is a vertex of C,,_;. Let
x € V(Cy—_1) and let z be a non-adjacent vertex of x in Cj,—;1. It is clear that every vertex
of W, lies on an x — z monophonic path. Hence {z} is a my,-set of W, and so my, (W,,) = 1.

(ii)) Let U = {u1,ug,...,um} and W = {wi,we,...,w,} be the vertex subsets of the
bipartition of the vertices of Ky, . If m = 1, then by Corollary 2.6, mgy (K1) =n — 1 for
any edge xy in Ki,. If m = 2, let e be an edge in K, ,, say e = ujw;. It is clear that
every vertex of K, lies on an u; — up monophonic path. Hence {us} is an e-monophonic
set of Ky, n and so me(Kp, ) = 1. If m > 3, then it is clear that no singleton subset of
V' is an e-monophonic set of K, », and so me(Kp, ) > 2. Without loss of generality, take
e = uywy. Let S = {ug,wy}. Then every vertex of U lies on a w; — we monophonic path
and every vertex of W lies on a u; — us monophonic path. Hence S is an e-monophonic set
of Ky, and s0 me(Kppp) =2. O

Theorem 2.10. For any edge xy in a connected graph G of order p > 3,
1 <mgy(G)<p-—2.

Proof. It is clear from the definition of mg,-set that m,,(G) > 1. Also, since the vertices
x and y do not belong to any my,-set, it follows that mg,(G) <p—2. O

Remark 2.11. The bounds for muy(G) in Theorem 2.10 are sharp. If C' is any cycle,
then mg,(C) = 1 for any edge xy in C. For any edge xy in a complete graph K, (p > 3),
My (Kp) =p— 2.
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Now we proceed to characterize graphs for which the upper bound in Theorem 2.10 is
attained.

Theorem 2.12. Let G' be a connected graph of order at least 3. Then G is either K, or
K -1 if and only if m,y(G) = p — 2 for every edge zy in G.

Proof. If G = K, then by Corollary 2.7, m,,(G) = p — 2 for every edge zy in G. If
G = Kip_1, then by Corollary 2.6, may(G) = p — 2 for any edge zy in G. Conversely,
suppose that mg,(G) = p — 2 for every edge zy in G. By Theorem 1.2, G has at least
two vertices which are not cut-vertices. Let zy be an edge of G with x is not a cut-vertex.
If G has two or more cut-vertices, then by Theorem 2.4(ii), m.y(G) < p — 3, which is a
contradiction. Thus the number of cut-vertices k of G is at most one.

Case (i) £ = 0. Then the graph G is a block. Now we claim that G is complete. If
G is not complete, then there exist two vertices x and y in G such that d(z,y) > 2. By
Theorem 1.3, x and y lie on a common cycle and hence = and y lie on a smallest cycle
C:x,x1,22,...,Y,...,Tn,x of length at least 4. Then (V(G) — V(C)) U {y} is an zz;-
monophonic set of G and so Mgy, (G) < p — 3, which is a contradiction. Hence G is the
complete graph.

Case (ii) £k = 1. Let z be the cut-vertex of G. If p = 3, then G = Ps, a star with three
vertices. If p > 4, we claim that G = Kj,_1. It is enough to prove that degree of every
vertex other than x is one. Suppose that there exists a vertex, say y, with deg y > 2. Let
z # x be an adjacent vertex of y in G. Let e = yz. Since the vertices y and z do not lie on
any minimum yz-monophonic set of G and by Theorem 2.4(ii), we have m,.(G) < p — 3,
which is a contradiction. Thus every vertex of G other than z is of degree one. Hence G is
a star. U

Theorem 2.13. For any edge zy in a connected graph GG, every x-monophonic set of G is
an xy-monophonic set of G.

Proof. Let S be an z-monophonic set of G. Then every vertex of G lies on an x — 2
monophonic path for some z in S. It follows that S is an zy-monophonic set of G. O

Corollary 2.14. For any edge xy in a connected graph G, mg,(G) < min{my(G), my(G)}.

Theorem 2.15. For every pair a,b of integers with 1 < a < b, there is a connected graph
G with may(G) = a and my(G) = b for some edge xy in G.

Proof. LetCy: x,y,z,u,z beacycleof order 4. Add b—1 new vertices vy, va, ..., Vqe—1, W1, Wa,
..., wp—q and joining each v;(1 <i<a—1) to z and joining each w;j(l < j < b—a)
to the vertices y and u, thereby producing the graph G given in Figure 2.2. Let S =
{v1,v2,...,v4-1} be the set of all simplicial vertices of G. Since S is not an zy-monophonic
set, it follows from Theorem 2.4(i) that mgy,(G) > a. On the other hand, S; = S U {u}
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is an zy-monophonic set of G and so m;y(G) = |Si| = a. Clearly, So = {vi,v9,...,
Vg—1, Z, W1, W2, . ., Wp_q } 18 the unique z-monophonic set of G and so m,;(G) = |S2| = b.

Figure 2.2: G

We have seen that if G is a connected graph of order p > 3, then 1 < my,(G) < p —2
for any edge zy in G. In the following theorem we give an improved upper bound for the
edge fixed monophonic number of a tree in terms of its order and monophonic diameter.

Theorem 2.16. If T is a tree of order p and monophonic diameter d,,, then mg,(T) <
p —dm + 1 for any edge zy in T.

Proof. Let P : vg,v1,v2,...,v4, be a monophonic path of length d,,. Now, let S =
V(G) —{v1,v2,...,v4, —1}. If e is an internal edge of P, then clearly S is an e-monophonic
set of T" so that m.(T) < |S| = p —dmn + 1. If e is an end edge of P, say e = vgvy, then
S1 = S — {w} is an e-monophonic set of T" so that m.(T) < |Si| = p —dp. If e = 2y
is an edge lies out side P, then Sy = S — {z,y} is an e-monophonic set of T' so that
me(T) < |S2| = p — dy. Hence for any edge xy in T', mgy(T) <p—dy+1. O

Remark 2.17. The bound in Theorem 2.16 is not true for any graph. For example, con-
sider the graph G given in Figure 2.3. Herep =7, d,(G) = 4, me(G) = 5 and p—d,,+1 = 4.
Hence m¢(G) > p — dy, + 1.

Figure 2.3 : G

Theorem 2.18. For any edge xy in a non-trivial tree T' of order p and monophonic diameter
dm, May(T) =p — dy, or p—dy, + 1 if and only if T' is a caterpillar.
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Proof. Let T" be any non-trivial tree. Let P : vg,v1,...,vq be a monophonic path of
length d,,. Let k& be the number of end vertices of T" and let [ be the number of internal
vertices of 1" other than vi,ve,...,v4_1. Then d,, — 1+ 1+ k = p. By Corollary 2.5,
May(T) =k or k—1 for any edge zy in T" and so muy(T) = p—dpym — 1+ 1 or p—dy, — 1 for
any edge zy in T'. Hence myy(T) = p—dp, + 1 or p — d,y, for any edge zy in T if and only if
I =0, if and only if all the internal vertices of T lie on the monophonic path P, if and only
if T is a caterpillar.

For any connected graph G, rad,,(G) < diam,,(G). It is shown in [3] that every two
positive integers a and b with a < b are realizable as the monophonic radius and monophonic
diameter, respectively, of some connected graph. This result can be extended so that the
edge fixed monophonic number can be prescribed. O

Theorem 2.19. For positive integers r,d and n > 2 with 2 < r < d, there exists a
connected graph G with rad,,(G) = r, diam,(G) = d and m.,(G) = n for some edge zy
in G.

Proof. Case (i) 2 <r =d. Let Cry2 : v1,v2,...,0,42,v1 be the cycle of order r+2.
Let G be the graph obtained from C; 19 by adding n vertices w1, ug, . .., u, and joining each
vertex u; (1 < i < n) to both ve and v,42, and also adding the edge viu;. The graph
G is shown in Figure 2.4. It is easily verified that the monophonic eccentricity of each
vertex of G is r and so rad,,(G) = diam,,(G) = r. Also, for the edge viuy, it is clear that
S = {vry1,u2,...,u,} is a minimum zy-monophonic set of G and so my, (G) = n.

Vrgl Vg2

NS

Figure 2.4 : G

Case (ii) 2 <r < d < 2r. Let C,y2 = v1,v2,...,042,v1 be the cycle of order r + 2 and let
Py 41t ug,u1,...,uq—r be a path of order d —r + 1. Let H be the graph obtained from
Cr42 and P;_,1 by identifying v1 in C,49 and ug in Py_,11. Let G be the graph obtained
from H by adding n — 1 new vertices wi, ws, ..., w,—1 and joining each w;(1 <i <n—1)
with ug_,—1. The graph G is shown in Figure 2.5. It is easily verified that r < e,,(z) < d
for any vertex x in G, ep(v1) = r and ey, (vs) = d. Thus rad,,(G) = r and diam,,(G) = d.
For the edge e = ug_r_1ug—r, S = {w1,ws,...,wy_1,v3} is a minimum e-monophonic set
of G and so m.(G) = n.
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42 ] " " Wp—1

Figure 2.5 : G

Case (iii) d > 2r. Let Py_1 : v1,v2,...,v2,—1 be a path of order 2r — 1. Let G be the
graph obtained from the wheel W = K7 + Cy,9 and the complete graph K,, by identifying
the vertex vy of P»._1 with the central vertex of W, and identifying the vertex vo,._1 of
Py,_1 with a vertex of K,,. The graph G is shown in Figure 2.6. Since d > 2r, we have
em(x) = d for any vertex x € V(Cyy2). Also, e, (z) = 2r for any vertex z € V(K,,) —var—1;
r < em(z) < 2r —1 for any vertex © € V(Par_1); and ey, (z) = r for the central vertex z of
Py,._1. Thus rad,,(G) = r and diam,,(G) = d.

(1] ity
K,
i vz V3 Ugr—2| Var—1
L * s
Ud41 td+2
Figure 2.6 : &

Let S = V(K,) — {va,—1} be the set of all simplicial vertices of G. Then by Theorem
2.4(i), every me-set contains S for the edge e = ujua. It is clear that S is not an e-
monophonic set of G and so me(G) > |S| =n — 1. Since 8" = SU{ugy1} is an e-monophonic
set of G, we have m.(G) =n. O
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