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Abstract

We determine a closed-form expression for the fifth characteristic
coefficient of the power of a path. To arrive at this result, we establish
the number of 4-cycles in the graph by means of their structural prop-
erties. The method developed might be applied to other well-structured
graph classes in order to count 4-cycles or modified to count cycles of
different length.
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1. Introduction

In the literature of graph spectra several papers are dedicated to the char-
acteristic polynomial of matrices associated with graphs. Among them we
can highlight Prabhu and Deo [17], Simic’ and Stanic’ [21], Schwenk [20],
Hagos [11], Moraes et al. [15] and Guo et al. [9].

The k-th coefficient of the characteristic polynomial of a graph G (rel-
ative to the adjacency matrix of G) depends on the number of cycles and
the number of the matchings of the size k− 1, see Biggs [2]. In this paper,
we explicitly determine the fifth characteristic coefficient of powers of paths
by establishing a closed-form expression for the number of 4-cycles therein.

For a comprehensive treatment of the theory of graph spectra, we rec-
ommend [3], [5] and [6].

Let G = (V,E) be a simple graph with n vertices, m edges an c con-
nected components. Recall that the rank of G is r(G) = n − c and the
co-rank of G is s(G) = m − n + c. An elementary subgraph of G is one
in which the connected components are either single edges, K2, cycles of
length r, Cr, or disjoint union between them. The co-rank of an elementary
subgraph is just the number of its components which are cycles.

Let PG (λ) = det(λI − A(G)) be the characteristic polynomial of G,
where A(G) is the adjacency matrix of the graph and I is the identity
matrix of order n. It is well known that the i-coefficient of PG (λ) =
λn + a1λ

n−1 + a2λ
n−2 + ...+ an, i = 1, 2, . . . , n, is given by

(−1)iai =
X
Λ∈Γi

(−1)r(Λ)2s(Λ),(1.1)

where Γi is the set of all elementary subgraphs of G with i vertices, r(Λ)
is the rank and s(Λ) is the co-rank of each Λ ∈ Γi (Biggs [2]). Hence, the
coefficients of the PG (λ) are directly related to the graph structure.

Moraes et al. [15] provided an algorithm for counting 2-matchings
(a subgraph formed by two disjoint simple edges) in any graph. If d =
(d1, d2, . . . , dn) is the degree sequence of G, the number of 2-matchings is

2(G) =
1
2

³
m2 +m−Pn

i=1d
2
i

´
.(1.2)

It is possible to use equation (1.2) in (1.1) to determine an alterna-
tive formula for the characteristic coefficient a4 of G. For a closed-form
expression, the number of 4-cycles in the graph must be known.

The investigation on counting cycles in graphs is not recent. Given the
arboricity a(G) of a graph G (the minimum number of edge-disjoint forests
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into which G can be decomposed), Chiba and Nishizeki [7] established
four algorithms for: (i) listing all the triangles in a graph G with time
complexity of O(a(G)m), (ii) finding all the quadrangles in G with time
complexity of O(a(G)m), (iii) listing all the complete subgraphs Kl of order
l with time complexity of O(la(G)l−2m), and (iv) listing all the cliques with
time complexity ofO(a(G)m) per clique. Richards [18] presentedO(n logn)
time algorithms for detecting both a 5- and a 6-cycle in planar graphs using
separators. Alon et al. [1] provided an assortment of methods for finding
and counting simple cycles of a given length in directed and undirected
graphs. Most of the bounds obtained depend solely on the number of
edges in the graph in question, and not on the number of vertices. Schank
and Wagner [19] made an experimental study focused on the efficiency of
algorithms for triangle counting and listing and gave a simple enhancement
of a well known algorithm, making triangle listing and counting in huge
networks feasible.

The results mentioned in the previous paragraph depend directly on
the number of vertices and/or of edges in a graph. Thus, the algorithms
for computing the number of cycles of a given length can be costly if n
and/or m are large. Our intention is to take advantage of the well-behaved
structure and degree distribution of the k-th power of a path, k > 2, to find
out explicit functions for the number of 4-cycles in these graphs for each k.
We approach the problem of counting 4-cycles by using lists of labels. The
method developed in this paper might be applied to other well-structured
graphs or modified to count cycles of different lengths.

This paper is organized as follows. In Section 2, we present a subclass of
chordal graphs, the k-power of a path, P k

n , and transcribe some properties
of them given by Pereira et al. [16] and Markenzon at al. [12]. In Section
3, we develop methods for counting 4-cycles in the power of a path graph.
The number of 4-cycles in each case is expressed as a polynomial in the
variables n and k and hence can be computed within O(1) operations. The
fifth characteristic coefficient of P k

n graphs are determined in Section 4.

2. Basic Results

Given a graph G = (V,E) and a positive integer d, the d-th power of G is
the graph Gd = (V,E0) in which two vertices are adjacent when they have
distance at most d in G (Diestel [8]). Clearly G = G1 ⊆ G2 ⊆ . . ..

The path of order n is denoted Pn. The k-th power of a path is denoted
P k
n , 1 ≤ k < n.



532 Beatriz Malajovich, Nair M. M. Abreu and Lilian Markenzon

A class that generalizes P k
n is the k-path graphs, which constitutes

a subclass of chordal graphs. Their structural aspects are essential for
achieving the results in this paper.

Definition 1. (Pereira et al. [16]) A k-path graph, k > 0, can be induc-
tively defined as follows:

• Every complete graph with k + 1 vertices is a k-path graph.

• If G = (V,E) is a k-path graph, v /∈ V and Q ⊆ V is a k-clique of G
containing at least one simplicial vertex, then G0 = (V ∪{v}, E∪{vw |
w ∈ Q}) is also a k-path graph.

• Nothing else is a k-path graph.

Theorem 1. (Markenzon et al. [12]) The power of a path P k
n , 1 ≤ k < n,

is a k-path graph.

Note that there is a unique P k
n of order n for each k; it can be inductively

defined by replacing the second item of Definition 1 with the following item:

• If G = (V,E) is a power of a path, v /∈ V and Q ⊆ V is a k-
clique of G composed by the k most recently included vertices, then
G0 = (V ∪ {v}, E ∪ {vw | w ∈ Q}) is also a power of path.

Figure 1 shows P 211 and P 511.
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The number m of edges in any k-path on n vertices is directly derived
from the way it is constructed. Its expression depends solely on the values
of k and n:

m = k
³
n− 1

2

´
− k2

2 .(2.1)

3. Counting 4-cycles in P k
n

In this section we derive expressions for the number of 4-cycles in powers
of a path on n vertices in terms of the variables n and k.

A 4-cycle is equivalent to a cyclic sequence of four different numbers
which, being positive integers, can be put in crescent order. Let a, b, c and
d be the labels of four vertices and assume that a < b < c < d. If there is
a cycle in P k

n containing these vertices, we can always set the lower vertex,
a, to the first position in its associated cyclic sequence, writing it as a .
Moreover, with the lower label occupying the first position, there are only
two possible positions for the greatest label: it either occupies the third or
the last position in the sequence. This is the major idea behind the proof
of next theorem. Any 4-cycle can be identified to a list of one and only one

Marisol Martínez
fig-1
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of the following types:

Type 1: a d or Type 2: a d ,(3.1)

where a, b, c and d are positive integers satisfying a < b < c < d.
For finding the total number of non isomorphic 4-cycles contained in

P k
n , we deal separately with the ones associated to a list of Type 1 and of
Type 2, as defined in (3.1).

Theorem 1. Let P k
n be the k-power of a path on n vertices, with k ≥ 2

and n > 2k. The number n4 of 4-cycles in P k
n , is given by

n4
³
P k
n

´
= kn

6

³
4k2 − 9k + 5

´
− k

12

³
7k3 − 8k2 − 7k + 8

´
.(3.2)

Proof. In a list of Type 1, the four positive integers a, b, c and d that
form the sequence satisfy a < b < c < d, a occupies the first and d the
last position in the sequence. The lowest possible value for a in the list
a d is 1, while its greatest possible value is (n− 3). This is explained by
the fact that there are three integers greater than a in the list and its last
position, occupied by d, cannot have a value exceeding the total number n
of vertices.

Tables 1 and 2 are used to organize the counting of all cycles associated
to lists of Type 1. Table 1 has n− k+1 rows and n− 2 columns. The first
column indicates the possible values of a, which can vary from 1 to (n−k),
while the first row shows all possible values for d, which can vary from 4
to n. A cell rs, r = 2, 3, . . . , n − k + 1 and s = 2, 3, . . . , n − 2, is filled in
with the number of 4-cycles having the value of a given in cell r1 and the
value of d given in cell 1s. A cell is left empty if it does not exist any such
cycle for the given values of a and d.

By construction of P k
n we show that, for each 1 ≤ a ≤ (n−k), it exists a

4-cycle associated to a List of Type 1 if and only if d is any integer satisfying
(a+3) ≤ d ≤ (a+k). In fact, the gaps in a Type 1 list must be filled in with
two distinct integers strictly greater than a and lower than d; therefore, the
minimum acceptable value for d is (a+3). On the other hand, d cannot be
greater than (a+k), since that would contradict the fact that two adjacent
vertices in P k

n are connected by a path of length at most k.
Let 1 ≤ a ≤ (n−k) and (a+3) ≤ d ≤ (a+k) (non empty cells of Table

1). Assume that exist exactly i integers strictly between a and d. We can
fill in the two gaps in the list a d by picking any two of these integers.
Thus, the number of different lists obtained is equal to the arrangement of
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i numbers taken 2 at a time, Ai
2. For each value of a in Table 1 there arePk−1

i=2 A
i
2 lists of Type 1. Hence, for 1 ≤ a ≤ (n− k), we count

(n− k)
k−1X
i=2

Ai
2(3.3)

lists of Type 1 associated to non isomorphic 4-cycles in P k
n .

The cases (n− k+1) ≤ a ≤ (n− 3) are slightly different. As the values
of d cannot exceed n, we count less and less integers strictly between a
and d when a varies from (n− k + 1) to (n− 3). Table 2 (p. 8), which has
k− 2 rows and n− 2 columns, is helpful to organize the counting. Its cells
are filled in analogously as the previous table, with the one restriction that
d ≤ n. For each a = (n − j), j = 3, . . . , k − 1, there are Pj−1

i=2 A
i
2 lists of

Type 1; thus, for 3 ≤ j ≤ k − 1, we count

k−2X
i=2

Ai
2 +

k−3X
i=2

Ai
2 + . . . +

3X
i=2

Ai
2 + A22 =

k−2X
j=2

jX
i=2

Ai
2 .(3.4)

Summing (3.3) to the expression on the right side of equality (3.4), we
arrive at the number of non isomorphic 4-cycles in P k

n associated to a list
of Type 1 in terms of n and k:

(n− k)
k−1X
i=2

Ai
2 +

k−2X
j=2

jX
i=2

Ai
2.(3.5)

In a list of Type 2, the four positive integers a, b, c and d that form the
sequence satisfy a < b < c < d, a occupies the first and d the third position
in the sequence. The lowest possible value for a in the list a d is 1, while
its greatest possible value is (n− 3), which is explained in the same way as
the previous case. Since the sequence is cyclic, both a b d c and a c d b are
equivalent to the same 4-cycle. So as to avoid counting it twice, we make
the convention to consider the sequence which has the lower number in its
second position (a b d c).

Tables 3 and 4 are used to organize the counting of all cycles associated
to lists of Type 2. Table 3 has n − 2k + 2 rows and n − 2 columns. The
first column indicates the possible values of a, which can vary from 1 to
(n− 2k + 1), while the first row shows all possible values for d, which can
go from 4 to n. A cell rs, r = 2, 3, . . . , n− k+ 2 and s = 2, 3, . . . , n− 2, is
filled in with the number of 4-cycles having the value of a given in cell r1
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and the value of d given in cell 1s. A cell is left empty if it does not exist
any such cycle for the given values of a and d.

By construction of P k
n we show that, for each 1 ≤ a ≤ (n− 2k + 1), it

exists a 4-cycle associated to a List of Type 2 if d is any integer satisfying
(a + 3) ≤ d ≤ (a + 2k − 1). In fact, the gaps in a Type 2 list must be
filled in with two distinct integers strictly greater than a and lower than
d; therefore, the minimum acceptable value for d is (a + 3). On the other
hand, d cannot be greater than (a + 2k − 1), since that would contradict
the fact that two adjacent vertices in P k

n are connected by a path of length
at most k.

Let 1 ≤ a ≤ (n − 2k + 1) and (a + 3) ≤ d ≤ (a + 2k − 1) (non empty
cells of Table 3). Assume that exist exactly i integers jl, l = 1, 2, . . . , i,
satisfying, for each l, a < jl < d, |a− jl ≤ k and |d− jl ≤ k. The number
of ways that the gaps in a list a d can be filled in with any two of these
integers, putting the lower between them in the second position, is

(n− 2k + 1)
"

kX
i=2

Ci
2 +

k−1X
i=2

Ci
2

#
= (n− 2k + 1)

"Ã
2
k−1X
i=2

Ci
2

!
+Ck

2

#
.

(3.6)

It remains to analize the cases (n−2k+2) ≤ a ≤ (n−3). Table 4 (p. 9),
which has 2k − 2 rows and n − 2 columns, is useful for this purpose. Its
cells are filled in analogously as the previous table, having attention to the
fact that the values of d cannot exceed n. By considering the rows of Table
4 in pairs (first row with the last, second row with the second-to-last, and
so on), we see that the number of ways that the gaps in a list a d can be
filled in with any two of these integers, putting the lower between them in
the second position, is

(n−3)−(n−2k+1)
2

"
kX
i=2

Ci
2 +

k−1X
i=2

Ci
2

#
= (k − 2)

"Ã
2
k−1X
i=2

Ci
2

!
+Ck

2

#
.

(3.7)
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Summing the expressions on the right side of equalities (3.6) and (3.7),
we arrive at the number of non isomorphic 4-cycles in P k

n associated to a
list of Type 2 in terms of n and k:

(n− k − 1)
"Ã
2
k−1X
i=2

Ci
2

!
+ Ck

2

#
.(3.8)

Therefore, the total number n4 of non isomorphic 4-cycles in P k
n in

terms of n and k can be obtained by the sum of (3.5) and (3.6):

n4
³
P k
n

´
= (n− k)

k−1X
i=2

Ai
2 +

k−2X
j=2

jX
i=2

Ai
2 + (n− k− 1)

"Ã
2
k−1X
i=2

Ci
2

!
+ Ck

2

#
.

(3.9)

A few simplifications must be made to recognize (3.9) as (3.2). The last

part on the right side of (3.9) can be rewritten as (n−k−1)
h³Pk−1

i=2 A
i
2

´
+ Ck

2

i
.

By clustering up the sums of arrangements, we see that (3.9) is equivalent
to

n4
³
P k
n

´
= (2(n− k)− 1)

k−1X
i=2

Ai
2| {z }

(i)

+
k−2X
j=2

jX
i=2

Ai
2| {z }

(ii)

+ (n− k − 1)Ck
2| {z }

(iii)

.

(3.10)

The equality
Pk−1

i=2 A
i
2 =

1
3

¡
k3 − 3 k2 + 2 k

¢
can be used to simplify (i).

On the other hand, (ii) is equal to a polynomial in k:

k−2X
j=2

jX
i=2

Ai
2 = (k − 3)A22 + (k − 4)A32 + . . .+ (k − (k − 2))Ak−3

2 + (k − (k − 1))Ak−2
2

=
k−2X
i=2

(k − (i+ 1))Ai
2

= 1
12

¡
k4 − 6 k3 + 11 k2 − 6 k

¢
.
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The term (iii), in turn, is equal to 1
2

£¡
k2 − k

¢
n− k3 + k

¤
. Replacing

(i), (ii) and (iii) by their simplified expressions and rearranging terms, we
finally arrive at the polynomial in n and k presented in (3.2). 2

From (3.2), we compute n4
¡
P 211

¢
= 8 4-cycles for the 2-path on 11

vertices in Figure 1(a) and n4
¡
P 511

¢
= 280 for the 5-path on 11 vertices in

Figure 1(b).

4. The fifth characteristic coefficient

The elementary subgraphs with four vertices in a graph G are those com-
posed by two disjoint edges and the cycles of length 4. From (1.1), the
fifth characteristic coefficient of G can be computed by the difference a4 =
n2− 2n4, where n4 is the number of 4-cycles and n2 is the number of pairs
of disjoint edges in G. The number n2 is equivalent to 2 in (1.2), so that
the difference can be rewritten as a4 = n2 − 2n4 [15].

Lemma 1. For the k-power of a path graph on n vertices, P k
n , n > 2k, the

coefficient a4 in the characteristic polynomial PPk
n
(λ) is given by

a4
³
P k
n

´
= (kn)2

2 − kn
6

³
11k2 − 3k + 7

´
+ k

24

³
31k3 + 14k2 + 5k + 22

´
.(4.1)

Proof. The degree sequence of a k-path on n vertices is

d = (k, k + 1, . . . , 2k − 2, 2k − 1, 2k, . . . , 2k| {z }
n−2k

, 2k − 1, 2k − 2, . . . , k + 1, k),

as shown in [13]. The sum of squares of the degrees is equal to

nX
i=1

d2i = 2
h
k2 + (k + 1)2 + . . .+ (2k − 1)2

i
+ (n− 2k)(2k)2(4.2)

Therefore, 2 can be computed by replacing (2.1) and (4.2) in (1.2).
Subtracting twice the expression for n4 in (3.2) from 2, we arrive at the
polynomial in n and k presented in (4.1). 2

By (4.2), we get a4
¡
P 211

¢
= 105 and a4

¡
P 511

¢
= −45 for the graphs

depicted in Figure 1.
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