Proyecciones Journal of Mathematics Vol. 36, N^o 4, pp. 589-600, December 2017. Universidad Católica del Norte Antofagasta - Chile

Pairwise generalized b- R_o spaces in bitopological spaces

Diganta Jyoti Sarma Central Institute of Technology, India and Binod Chandra Tripathy Tripura University, India Received : January 2017. Accepted : May 2017

Abstract

The main purpose of this paper is to introduce pairwise generalized b- R_o spaces in bitopological spaces with the help of generalized b-open sets in bitopological spaces and give several characterizations of this spaces. We also introduce generalized b-kernel of a set and investigate some properties of it and study the relationship between this space and other bitopological spaces.

Key Words : Bitopological spaces; pairwise gb- R_o spaces ; pairwise gb- R_1 spaces ; (i, j)-gb-kernel ; (i, j)-gb-open sets.

AMS Classification : 54A10; 54C08; 54C10; 54D15.

1. Introduction

A triplet (X, τ_1, τ_2) , where X is a non-empty set and τ_1, τ_2 are topologies on X is called a bitopological space. Kelly [9] initiated the study of bitopological spaces. Later on several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Andrijevic [6] introduced a new class of generalized open sets called *b*-open sets in the field of topology and studied several fundamental and interesting properties. Later on Khadra and Nasef [1] and Al-Hawary and Al-Omari [4] defined the notions of b-open sets in bitopological spaces. Al-Hawary ([2], [3]) studied about the pre-open sets. Tripathy and Sarma ([18], [19], [20], [21], [22]) have done some works on bitopological spaces using this notion. Ganster and Steiner [8] introduced the concept of generalized b-closed sets in topological spaces. There after Tripathy and Sarma [22] have extended this notion to bitopological spaces. It is observed from literature that there has been a considerable work on different retatively weak form of seperation axiom like R_o axiom. For instance, semi- R_o , pre- R_o , b- R_o are some of the varient form of R_o property that have been investigated by different researchers as separate entities. Khaleefa [10] has introduced and studied new types of separation axioms termed by generalized $b R_o$ and generalized $b-R_1$ by using generalized b-open sets due to Ganster and Steiner [8]. Tripathy and Acharjee [20] have done some works on bitopological spaces.

In this paper, we introduce the notion of pairwise gb- R_o spaces and pairwise gb- R_1 spaces in bitopological spaces and investigate some of their properties. In particular, the notion of (i, j)-gb-kernel of a set is also defined in bitopological spaces.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) denotes a bitopological space on which no separation axioms are assumed. For a subset A of X, i-int(A) and jcl(A) denotes the *i*-interior and *j*-closure of A with respect to the topology τ_i and τ_j respectively, where $i, j \in \{1, 2\}, i \neq j$.

Definition 2.1. A subset A of (X, τ) is called b-open, if $A \subset int(cl(A)) \cup cl(int(A))$ and called b-closed if $X \setminus A$ is b-open.

One may refer to Andrijevic [6] for the above definition.

The following definitions are due to Al-Hawary and Al-Omari [4].

Definition 2.2. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-b-open if $A \subset i$ -int(j-cl $(A)) \cup j$ -cl(i-int(A)). The complement of an (i, j)-b-open set is (i, j)-b-closed.

By (i, j) we mean the pair of topologies (τ_i, τ_j) .

Definition 2.3. Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then

(i) the (i, j)-b-closure of A denoted by (i, j)-b cl(A), is defined by the intersection of all (i, j)-b-closed sets containing A.

(*ii*) the (i, j)-*b*-interior of A denoted by (i, j)-*b* int(A), is defined by the union of all (i, j)-*b*-open sets contained in A.

The following Definitions and results are due to Tripathy and Sarma [19].

Definition 2.4. A subset Aof a bitopological space (X, τ_1, τ_2) is said to be (i, j)-generalized b-closed (in short, (i, j)-gb-closed) set if (j, i)-bcl $(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X.

We denote the family of all (i, j)-gb-closed sets and (i, j)-gb-open sets $in(X, \tau_1, \tau_2)$ by GBC(i, j) and GBO(i, j) respectively.

Definition 2.5. The (i, j)-generalized *b*-closure of a subset *A* of a bitopological space (X, τ_1, τ_2) is the intersection of all (i, j)-*gb*-closed sets containing *A* and is denoted by (i, j)-*gbcl*(*A*).

Lemma 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is (i, j)-gbopen if and only if $U \subset (j, i)$ -bint(A), whenever U is τ_i -closed and $U \subset A$.

Lemma 2.2. For any subset A of a bitopological space $(X, \tau_1, \tau_2), A \subset (i, j)$ -gbcl(A).

Lemma 2.3. Let (X, τ_1, τ_2) be a bitopological space. If A is (i, j)-gb-closed subset of X, then A = (i, j)-gbcl(A).

Lemma 2.4. A point $x \in (i, j)$ -gbcl(A) if and only if for every (i, j)-gbopen set U containing $x, U \cap A \neq \emptyset$.

3. Pairwise gb- R_o Spaces

Definition 3.1. A bitopological space (X, τ_1, τ_2) is said to be pairwise generalized b- R_o (in short, pairwise gb- R_o) spaces if (j, i)- $gbcl(\{x\}) \subset U$, for every (i, j)-gb-open set U containing x and $i, j = 1, 2, i \neq j$.

Theorem 3.1. Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent :

(a) (X, τ_1, τ_2) is pairwise gb- R_o space.

(b) For any (i, j)-gb-closed set V and $x \notin V$, there exist a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$, for $i, j = 1, 2, i \neq j$.

(c) For any (i, j)-gb-closed set V and $x \notin V$, (j, i)-gbcl $(\{x\}) \cap V = \emptyset$ for $i, j = 1, 2, i \neq j$.

Proof. (a) \Rightarrow (b) Let V be an (i, j)-gb-closed set and $x \notin V$. By (a), we have (j, i)-gbcl($\{x\}$) $\subset X \setminus V$. Put $U = X \setminus (j, i)$ -gbcl($\{x\}$). Then U is (j, i)-gb-open and $V \subset X \setminus (j, i)$ -gbcl($\{x\}$) = U. Thus $V \subset U$ and $x \notin U$.

 $(b) \Rightarrow (c)$ Let V be a (i, j)-gb-closed set and $x \notin V$. By hypothesis, there exists a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$. Which implies $U \cap (j, i)$ -gbcl($\{x\}$) = \emptyset since U is (j, i)-gb-open. Hence $V \cap (j, i)$ gbcl($\{x\}$) = \emptyset .

 $(c) \Rightarrow (d)$ Let U be a (i, j)-gb-open set such that $x \in U$. Now, $X \setminus U$ is (i, j)-gb-closed and $x \notin X \setminus U$. By (c), (j, i)-gbcl $(\{x\}) \cap (X \setminus U) = \emptyset$. Which implies (j, i)-gbcl $(\{x\}) \subset U$. Hence (X, τ_1, τ_2) is pairwise gb-R_o space.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space. Then X is pairwise gb- R_o space if and only if for any two distinct points x and y of X, either (i, j)- $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{y\}) = \emptyset$ or $\{x, y\} \subset (i, j)$ - $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{y\})$.

Proof. Let (i, j)-gbcl $(\{x\}) \cap (j, i)$ -gbcl $(\{y\}) \neq \emptyset$ and $\{x, y\}$ is not contained in (i, j)-gbcl $(\{x\}) \cap (j, i)$ -gbcl $(\{y\})$. Let $z \in (i, j)$ -gbcl $(\{x\}) \cap (j, i)$ -gbcl $(\{y\})$ and $x \notin (i, j)$ -gbcl $(\{x\}) \cap (j, i)$ -gbcl $(\{y\})$. Now, $x \notin (j, i)$ -gbcl $(\{y\})$ implies $x \in X \setminus (j, i)$ -gbcl $(\{y\})$, which is a (j, i)-gb-open set containing x. Since $z \in (j, i)$ -gbcl $(\{y\})$, so (i, j)-gbcl $(\{x\})$ is not contained in $X \setminus (j, i)$ -gbcl $(\{y\})$. Hence (X, τ_1, τ_2) is not pairwise gb- R_o space.

Conversely, Let U be a (i, j)-gb-open set such that $x \in U$. Suppose (j, i)-gbcl($\{x\}$) is not contained in U. Then there exists a $y \in (j, i)$ -gbcl($\{x\}$) such that $y \notin U$ and (i, j)-gbcl($\{y\}$) $\cap U = \emptyset$, since $X \setminus U$ is (i, j)-gb-closed and $y \in X \setminus U$. Hence $\{x, y\}$ is not contained in (i, j)-gbcl($\{y\}$) $\cap (j, i)$ -gbcl($\{x\}$) and (i, j)-gbcl($\{y\}$) $\cap (j, i)$ -gbcl($\{x\}$) and (i, j)-gbcl($\{y\}$) $\cap (j, i)$ -gbcl($\{x\}$) $\neq \emptyset$.

Now, we introduce the concept of (i, j)-gb-kernel of a set and utilizing it to characterize the notion of pairwise gb- R_o space.

Definition 3.2. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. The intersection of all (i, j)-gb-open sets containing A is called the (i, j)-gb-kernel of A and is denoted by (i, j)-gb-ker(A).

The (i, j)-gb-kernel of a point $x \in X$ is the set (i, j)-gb-ker $(\{x\}) = \cap \{U : U \text{ is } (i, j)$ -gb-open and $x \in U\}$. $= \{y : x \in (i, j)$ -gbcl $(\{y\})\}.$

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. Then (i, j)-gb-ker $(A) = \{x \in X : (i, j)$ -gbcl $(\{x\}) \cap A \neq \emptyset\}$.

Proof. Let $x \in (i, j)$ -gb-ker(A) and (i, j)-gbcl $(\{x\}) \cap A = \emptyset$. Therefore (i, j)-gbcl $(\{x\}) \subset X \setminus A$ and so $A \subset X \setminus (i, j)$ -gbcl $(\{x\})$. But $x \notin X \setminus (i, j)$ -gbcl $(\{x\})$, which is a (i, j)-gb-open sets containing A. Thus $x \notin (i, j)$ -gb-ker(A), a contradiction. Consequently, (i, j)-gbcl $(\{x\}) \cap A \neq \emptyset$.

Conversely, let (i, j)-gbcl $(\{x\}) \cap A \neq \emptyset$. If possible, let $x \notin (i, j)$ -gbker(A). Then there exists $U \in GBO(i, j)$ such that $x \notin U$ and $A \subset U$. Let $y \in (i, j)$ -gbcl $(\{x\}) \cap A$. Then $y \in (i, j)$ -gbcl $(\{x\})$ and $y \in A \subset U$. Hence $U \in GBO(i, j)$ such that $y \in U$ and $x \notin U$, which is a contradiction, since $y \in (i, j)$ -gbcl $(\{x\}) \in GBC(i, j)$. Therefore $x \in (i, j)$ -gb-ker(A). Hence (i, j)-gb-ker(A) = $\{x \in X : (i, j)$ -gbcl $(\{x\}) \cap A \neq \emptyset$.

Theorem 3.4. Let (X, τ_1, τ_2) be a bitopological space. Then $\bigcap\{(i, j) - gbcl(\{x\}) : x \in X\} = \emptyset$ if and only if (i, j) - gb-ker $(\{x\}) \neq X$, for every $x \in X$.

Proof. Assume that $\bigcap\{(i, j) - gbcl(\{x\}) : x \in X\} = \emptyset$. Let $(i, j) - gbcker(\{x\}) = X$. If there is some $y \in X$, then X is the only (i, j) - gb-open set containing y. Which shows $y \in (i, j) - gbcl(\{x\})$, for every $x \in X$. Therefore $\bigcap\{(i, j) - gbcl(\{x\}) : x \in X\} \neq \emptyset$, a contradiction. Hence $(i, j) - gbcker(\{x\}) \neq X$, for every $x \in X$.

Conversely assume that (i, j)-gb-ker $(\{x\}) \neq X$, for every $x \in X$. Let $\bigcap\{(i, j)$ -gbcl $(\{x\}) : x \in X\} \neq \emptyset$. If there is some $y \in X$ such that $y \in \bigcap\{(i, j)$ -gbcl $(\{x\}) : x \in X\}$, then every (i, j)-gb-open set containing y must contain every point of X. This shows that X is the only (i, j)-gb-open set containing y. Therefore (i, j)-gb-ker $(\{x\}) = X$, a contradiction. Hence $\bigcap\{(i, j)$ -gbcl $(\{x\}) : x \in X\} = \emptyset$.

Theorem 3.5. Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent :

(a) (X, τ_1, τ_2) is pairwise gb- R_o space.

(b) For any $x \in X$, (i, j)-gbcl($\{x\}$) = (j, i)-gb-ker($\{x\}$), for i, j = 1, 2 and $i \neq j$.

(c) For any $x \in X$, (i, j)-gbcl($\{x\}$) $\subset (j, i)$ -gb-ker($\{x\}$), for i, j = 1, 2 and $i \neq j$.

(d) For any $x, y \in X$, $y \in (i, j)$ -gb-ker($\{x\}$) if and only if $x \in (j, i)$ -gb-ker($\{y\}$), for i, j = 1, 2 and $i \neq j$.

(e) For any $x, y \in X$, $y \in (i, j)$ -gbcl($\{x\}$) if and only if $x \in (j, i)$ -gbcl($\{y\}$), for i, j = 1, 2 and $i \neq j$.

(f) For any (i, j)-gb-closed set V and $x \notin V$, there exist a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$, for i, j = 1, 2 and $i \neq j$.

(g) For each (i, j)-gb-closed set $V, V = \bigcap \{U : U \text{ is } (j, i)$ -gb-open and

 $V \subset U$ }, for i, j = 1, 2 and $i \neq j$. (h) For each (i, j)-gb-open set $U, U = \bigcup \{V : V \text{ is } (j, i)$ -gb-closed and $V \subset U$ }, for i, j = 1, 2 and $i \neq j$.

(i) For every non-empty subset A of X and for any (i, j)-gb-open set U such that $A \cap U \neq \emptyset$, there exists a (j, i)-gb-closed V such that $A \cap V \neq \emptyset$ and $V \subset U$, for i, j = 1, 2 and $i \neq j$.

(j) For any (j,i)-gb-closed set V and $x \notin V$, (j,i)-gbcl $(\{x\}) \cap V = \emptyset$, for i, j = 1, 2 and $i \neq j$.

Proof. $(a) \Rightarrow (b)$ Let $x, y \in X$. Then by Definition 3.2, $y \in (j, i)$ -gb-ker($\{x\}$) $\Leftrightarrow x \in (j, i)$ -gbcl($\{y\}$). Since X is pairwise gb-Ro space, therefore by Theorem 3.2, we have $x \in (j, i)$ -gbcl($\{y\}$) $\Leftrightarrow y \in (i, j)$ -gbcl($\{x\}$). Thus $y \in (j, i)$ -gb-ker($\{x\}$) $\Leftrightarrow x \in (j, i)$ -gbcl($\{y\}$) $\Leftrightarrow y \in (i, j)$ -gbcl($\{x\}$). Hence (i, j)-gbcl($\{x\}$) = (j, i)-gb-ker($\{x\}$).

 $(b) \Rightarrow (c)$ It is obvious.

 $(c) \Rightarrow (d)$ Let $x, y \in X$ and $y \in (i, j)$ -gb-ker $(\{x\})$. Then by Definition 3.2, $x \in (i, j)$ -gbcl $(\{y\})$. Therefore by $(c), x \in (i, j)$ -gbcl $(\{y\}) \subset (j, i)$ -gb-ker $(\{y\})$. Thus $x \in (j, i)$ -gb-ker $(\{y\})$. Similarly, we can prove the other part also.

 $(d) \Rightarrow (e)$ Let $x, y \in X$ and $y \in (i, j)$ -gbcl($\{x\}$). Then by Definition 3.2, $x \in (i, j)$ -gb-ker($\{y\}$). Therefore by (d), $y \in (j, i)$ -gb-ker($\{x\}$) and so $x \in (j, i)$ -gbcl($\{y\}$). Similarly, we can prove the other part also.

 $(e) \Rightarrow (f)$ Let V be a (i, j)-gb-closed set and $x \notin V$. Then for any $y \in V$, we have (i, j)-gbcl($\{y\}$) $\subset V$ and $x \notin (i, j)$ -gbcl($\{y\}$). Therefore by $(e), y \notin (j, i)$ -gbcl($\{x\}$). That is there exists a (j, i)-gb-open set U_y such that $y \in U_y$ and $x \notin U_y$. Let $U = \bigcup_{y \in V} \{U_y : U_y \text{ is } (j, i)$ -gb-open, $y \in U_y$ and $x \notin U_y$ }. Hence U is (j, i)-gb-open set such that $x \notin U$ and $V \subset U$.

 $(f) \Rightarrow (g)$ Let V be an (i, j)-gb-closed set in X and $W = \bigcap \{U : U \text{ is } (j, i)$ -gb-open and $V \subset U\}$. Clearly, $V \subset W$. Suppose that, $x \notin V$. Therefore by (f), there is a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$. So $x \notin W$ and thus $W \subset V$. Hence $V = W = \bigcap \{U : U \text{ is } (j, i)$ -gb-open and $V \subset U\}$.

 $(g) \Rightarrow (h)$ It is obvious.

 $(h) \Rightarrow (i)$ Let A be a non-empty subset of X and U be a (i, j)-gb-open set in X such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$. By (h), $U = \bigcup \{V : V \text{ is} (j, i)$ -gb-closed and $V \subset U\}$. Then there is a (j, i)-gb-closed V such that $x \in V \subset U$. Therefore $x \in A \cap V$ and so $A \cap V \neq \emptyset$.

 $(i) \Rightarrow (j)$ Let V be a (i, j)-gb-closed set such that $x \notin V$. Then $X \setminus V$ is (i, j)-gb-open set containing x and $\{x\} \cap (X \setminus V) \neq \emptyset$. Therefore by (i), there is a (j, i)-gb-closed set W such that $W \subset X \setminus V$ and $\{x\} \cap W \neq \emptyset$. Hence (j, i)-gbcl $(\{x\}) \subset X \setminus V$ and so (j, i)-gbcl $(\{x\}) \cap V = \emptyset$.

 $(j) \Rightarrow (a)$ Follows from Theorem 3.1.

Theorem 3.6. In a pairwise gb- R_o space (X, τ_1, τ_2) , for any $x \in X$, (i, j)- $gbcl(\{x\}) \cap (j, i)$ -gb-ker $(\{x\}) = \{x\}$ holds for i, j = 1, 2 and $i \neq j$, then (i, j)- $gbcl(\{x\}) = \{x\}$.

Proof. Since (X, τ_1, τ_2) is pairwise gb- R_o space, therefore by Theorem 3.5 (b), we have (i, j)- $gbcl(\{x\}) = (j, i)$ -gb-ker $(\{x\})$. Hence the result follows.

Theorem 3.7. If (X, τ_1, τ_2) is a pairwise gb- R_o space, then for any $x, y \in X$, either (i, j)- $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{x\}) = (i, j)$ - $gbcl(\{y\}) \cap (j, i)$ - $gbcl(\{y\})$ or $\{(i, j)$ - $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{x\}) \} \cap \{(i, j)$ - $gbcl(\{y\}) \cap (j, i)$ - $gbcl(\{y\}) \} = \emptyset$.

Proof. Let (X, τ_1, τ_2) is a pairwise gb- R_o space. Suppose that $\{(i, j)$ - $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{x\}) \cap \{(i, j)$ - $gbcl(\{y\}) \cap (j, i)$ - $gbcl(\{y\}) \neq \emptyset$. Let $z \in \{(i, j)$ - $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{x\}) \cap \{(i, j)$ - $gbcl(\{y\}) \cap (j, i)$ - $gbcl(\{y\}) \}$. Then (i, j)- $gbcl(\{z\}) \subset (i, j)$ - $gbcl(\{x\}) \cap (i, j)$ - $gbcl(\{y\})$ and (j, i)- $gbcl(\{z\}) \subset (j, i)$ - $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{z\}) \subset (j, i)$ - $gbcl(\{z\}) \subset (j, i)$ - $gbcl(\{z\}) \subset (j, i)$ - $gbcl(\{y\})$. Similarly, $z \in (j, i)$ - $gbcl(\{x\})$ implies (i, j)- $gbcl(\{x\}) \cap (j, j)$ - $gbcl(\{y\})$, $z \in (i, j)$ - $gbcl(\{y\})$ implies (j, i)- $gbcl(\{y\}) \subset (j, j)$ - $gbcl(\{x\})$ and also from $z \in (j, i)$ - $gbcl(\{y\})$ implies (i, j)- $gbcl(\{x\}) \cap (i, j)$ - $gbcl(\{x\})$. Thus (i, j)- $gbcl(\{x\}) = (i, j)$ - $gbcl(\{y\})$ and (j, i)- $gbcl(\{x\}) = (j, i)$ - $gbcl(\{x\})$. Hence the result follows.

Theorem 3.8. If (X, τ_1, τ_2) is a pairwise gb- R_o space, then for any $x, y \in X$, either (i, j)-gb-ker $(\{x\}) \cap (j, i)$ -gb-ker $(\{x\}) \cap (j, j)$ -gb-ker $(\{y\}) \cap (j, i)$ -gb-ker $(\{y\}) \cap (i, j)$ -gb-ker $(\{x\}) \cap (j, i)$ -gb-ker $(\{y\}) \cap (i, j)$ -gb-ker $(\{y\}) \cap (j, i)$ -gb-ker $(\{y\}) \in \emptyset$.

Proof. The proof is similar to that of Theorem 3.7 which follows from Definition of (i, j)-gb-ker $(\{x\})$ and Theorem 3.5.

4. Pairwise gb- R_1 Spaces

Definition 4.1. A bitopological space (X, τ_1, τ_2) is said to be pairwise generalized b- R_1 (in short, pairwise gb- R_1) if for every pair of distinct points x and y of X such that (i, j)- $gbcl(\{x\}) \neq (j, i)$ - $gbcl(\{y\})$, there exists a (j, i)-gb-open set U and an (i, j)-gb-open set V such that $U \cap V = \emptyset$ and (i, j)- $gbcl(\{x\}) \subset U, (j, i)$ - $gbcl(\{y\}) \subset V$, for i, j = 1, 2 and $i \neq j$.

Theorem 4.1. If (X, τ_1, τ_2) is pairwise gb- R_1 space, then it is pairwise gb- R_o space.

Proof. Suppose that (X, τ_1, τ_2) is pairwise gb- R_1 space. Let U be an (i, j)gb-open set containing x. Then for each $y \in X \setminus U$, (j, i)-gbcl($\{x\}) \neq (i, j)$ gbcl($\{y\}$). Since (X, τ_1, τ_2) is pairwise gb- R_1 , there exists an (i, j)-gbopen set Uy and a (j, i)-gb-open set V_y such that $U_y \cap V_y = \emptyset$ and (i, j)gbcl($\{y\}$) $\subset V_y$, (j, i)-gbcl($\{x\}$) $\subset U_y$. Let $A = \bigcup \{V_y : y \in X \setminus U\}$. Then $X \setminus U \subset A$, $x \notin A$ and A is (j, i)-gb-open set. Therefore (j, i)gbcl($\{x\}$) $\subset X \setminus A \subset U$ and hence (X, τ_1, τ_2) is pairwise gb- R_o space.

Theorem 4.2. A bitopological space (X, τ_1, τ_2) is pairwise gb- R_1 if and only if for every $x, y \in X$ such that (i, j)- $gbcl(\{x\}) \neq (j, i)$ - $gbcl(\{y\})$, there exists an (i, j)-gb-open set U and a (j, i)-gb-open set V such that $x \in V$, $y \in U$ and $U \cap V = \emptyset$, for i, j = 1, 2 and $i \neq j$.

Proof. Suppose that (X, τ_1, τ_2) is pairwise gb- R_1 space. Let $x, y \in X$ such that (i, j)- $gbcl(\{x\}) \neq (j, i)$ - $gbcl(\{y\})$. Then there exists an (i, j)-gb-open set U and a (j, i)-gb-open set V such that $x \in (i, j)$ - $gbcl(\{x\}) \subset V$ and $y \in (j, i)$ - $gbcl(\{y\}) \subset U$.

Conversely, suppose that there exists an (i, j)-gb-open set U and a (j, i)gb-open set V such that $x \in V$, $y \in U$ and $U \cap V = \emptyset$. Therefore (i, j)gbcl($\{x\}$) $\cap (j, i)$ -gbcl($\{y\}$) $= \emptyset$. So by Theorem 3.2, (X, τ_1, τ_2) is pairwise gb- R_o space. Then (i, j)-gbcl($\{x\}$) $\subset V$ and (j, i)-gbcl($\{y\}$) $\subset U$. Hence (X, τ_1, τ_2) is pairwise gb- R_1 space.

Theorem 4.3. Let (X, τ_1, τ_2) be a bitopological space. Then the following are equivalent:

(a) (X, τ_1, τ_2) is pairwise gb- R_1 space.

(b) For any $x, y \in X$, $x \neq y$ and (i, j)-gbcl($\{x\}$) $\neq (j, i)$ -gbcl($\{y\}$) implies that there exists an (i, j)-gb-closed set G_1 and a (j, i)-gb-closed set G_2 such that $x \in G_1$, $y \notin G_1$, $y \in G_2$, $x \notin G_2$ and $X = G_1 \cup G_2$, for i, j = 1, 2 and $i \neq j$.

Proof. $(a) \Rightarrow (b)$ Suppose that (X, τ_1, τ_2) is pairwise gb- R_1 space. Let $x, y \in X$ such that (i, j)- $gbcl(\{x\}) \neq (j, i)$ - $gbcl(\{y\})$. Therefore by Theorem 4.2, there exists an (i, j)-gb-open set V and a (j, i)-gb-open set U such that $x \in U, y \in V$ and $U \cap V = \emptyset$. Then $G_1 = X \setminus V$ is (i, j)-gb-closed and $G_2 = X \setminus U$ is (j, i)-gb-closed set such that $x \in G_1, y \notin G_1, y \in G_2$, $x \notin G_2$ and $X = G_1 \cup G_2$.

 $(b) \Rightarrow (a)$ Let $x, y \in X$ such that (i, j)- $gbcl(\{x\}) \neq (j, i)$ - $gbcl(\{y\})$. Therefore for any $x, y \in X, x \neq y$, we have (i, j)- $gbcl(\{x\}) \cap (j, i)$ - $gbcl(\{y\}) = \emptyset$. Then by Theorem 3.2, (X, τ_1, τ_2) is pairwise gb- R_o space. By (b), there is an (i, j)-gb-closed set G_1 and a (j, i)-gb-closed set G_2 such that $x \in G_1$, $y \notin G_1$, $y \in G_2$, $x \notin G_2$ and $X = G_1 \cup G_2$. Therefore $x \in X \setminus G_2 = U$, which is (j, i)-gb-open and $y \in X \setminus G_1 = V$, which is (i, j)-gb-open. Which implies that (i, j)- $gbcl(\{x\}) \subset U, (j, i)$ - $gbcl(\{y\}) \subset V$ and $U \cap V = \emptyset$. Hence the result.

References

 A. A. Abo Khadra and A. A. Nasef: On extension of certain concepts from a topological space to a bitopological space, *Proc. Math. Phys.* Soc. Egypt, 79, pp. 91-102, (2003).

- [2] T. A. Al-Hawary: On Generalized preopen sets, Proyectiones: revista de matematica, 31(4), pp. 63-76, (2013).
- [3] T. A. Al-Hawary: Generalized preopen sets, Questions Answers Gen. Topology, 29 (1), pp. 73–80, (2011).
- [4] T. Al-Hawary and A. Al-Omari: b-open and b-continuity in Bitopological spaces, Al-Manarah, 13(3), pp.89-101, (2007).
- [5] A. Al-Omari and M. S. M. Noorani: On Generalized b-closed sets; Bull. Malays. Math. Sci. Soc., 32(1), pp.19-30, (2009).
- [6] D. Andrijevic: On b-open sets, Mat. Vesnik, 48, pp. 59-64, (1996).
- T. Fukutake: On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35, pp. 19-28, (1985).
- [8] M. Ganster and M. Steiner: On bτ-closed sets, Appl. Gen. Topol., 8(2), pp. 243-247, (2007).
- [9] J. C. Kelly: Bitopological spaces, Proc. London Math. Soc., 3(13), pp. 71-89, (1963).
- [10] H. A. Khaleefah: New types of separation axioms via generalised bopen sets, Res. J. Mathematical and Statistical Sci., 1 (8), pp. 16-24, (2013).
- [11] J. M. Mustafa: b- R_o and b- R_1 spaces, Global J. Pure Appl. Math., 4(1), pp. 65-71, (2008).
- I. L. Reilly: On bitopological separation properties, Nanta Math., 5(2), pp. 14-25, (1974).
- [13] I. L. Reilly: On pairwise R_o spaces, Ann. Soc. Sci. Bruxeles T., 88(III), pp. 293-296, (1974).
- [14] B. Roy and M. N. Mukherjee: A unified theory for R_o, R₁ and certain other separation properties and their varient forms, Bol. Soc. Paran. Math., 28(2), pp. 15-25, (2010).
- [15] M. S. Sarsak and N. Rajesh: Special Functions on Bitopological Spaces, Internat. Math. Forum, 4 (36), pp. 1775-1782, (2009).
- [16] J. Tong: On the separation axioms R_o , *Glasnik Math.*, 18(38), pp. 149-152, (1983).

- [17] B. C. Tripathy and S. Acharjee: On (γ, δ) -Bitopological semi-closed set via topological ideal, *Proyecciones J. Math.*, 33 (3), pp. 245-257, (2014).
- [18] B. C. Tripathy and D. J. Sarma: On b-locally open sets in Bitopological spaces, Kyungpook Math. Jour., 51 (4), pp. 429-433, (2011).
- [19] B. C. Tripathy and D. J. Sarma: On pairwise b-locally open and pairwise b-locally closed functions in bitopological spaces, *Tamkang Jour. Math.*, 43 (4), pp. 533-539, (2012).
- [20] B. C. Tripathy and D. J. Sarma: On weakly b-continuous functions in bitopological spaces, Acta Sci. Technol., 35 (3), pp. 521-525, (2013).
- [21] B. C. Tripathy and D. J. Sarma: On pairwise strongly b-open and pairwise strongly b-closed functions in bitopological spaces, Int. J. Modern Mathematical Sci., 7 (3), pp. 276-286, (2013).
- [22] B. C. Tripathy and D. J. Sarma: Generalized b-closed sets in Ideal bitopological spaces, Proyectiones J. Math., 33(3), pp. 315-324, (2014).
- [23] B. C. Tripathy and D. J. Sarma: Generalized b-closed sets in bitopological spaces, (communicated).

Diganta Jyoti Sarma

Central Institute of Technology Kokrajhar-783370, BTAD, Assam, India e-mail: dj.sarma@cit.ac.in

and

Binod Chandra Tripathy

Department of Mathematics Tripura University; Suryamaninagar Agartala-799022; Tripura, India e-mail: tripathybc@rediffmail.com