Proyecciones Journal of Mathematics
Vol. 36, N ${ }^{o}$ 4, pp. 589-600, December 2017.
Universidad Católica del Norte
Antofagasta - Chile

Pairwise generalized $b-R_{o}$ spaces in bitopological spaces

Diganta Jyoti Sarma
Central Institute of Technology, India and
Binod Chandra Tripathy
Tripura University, India
Received: January 2017. Accepted: May 2017

Abstract

The main purpose of this paper is to introduce pairwise generalized $b-R_{o}$ spaces in bitopological spaces with the help of generalized b-open sets in bitopological spaces and give several characterizations of this spaces. We also introduce generalized b-kernel of a set and investigate some properties of it and study the relationship between this space and other bitopological spaces.

Key Words : Bitopological spaces; pairwise gb- R_{o} spaces ; pairwise $g b-R_{1}$ spaces ; (i, j)-gb-kernel ; (i, j)-gb-open sets.

AMS Classification : 54A10; 54C08; 54C10; $54 D 15$.

1. Introduction

A triplet (X, τ_{1}, τ_{2}), where X is a non-empty set and τ_{1}, τ_{2} are topologies on X is called a bitopological space. Kelly [9] initiated the study of bitopological spaces. Later on several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Andrijevic [6] introduced a new class of generalized open sets called b-open sets in the field of topology and studied several fundamental and interesting properties. Later on Khadra and Nasef [1] and Al-Hawary and Al-Omari [4] defined the notions of b-open sets in bitopological spaces. Al-Hawary ([2], [3]) studied about the pre-open sets. Tripathy and Sarma ([18], [19], [20], [21], [22]) have done some works on bitopological spaces using this notion. Ganster and Steiner [8] introduced the concept of generalized b-closed sets in topological spaces. There after Tripathy and Sarma [22] have extended this notion to bitopological spaces. It is observed from literature that there has been a considerable work on different retatively weak form of seperation axiom like R_{o} axiom. For instance, semi- R_{o}, pre- $R_{o}, b-R_{o}$ are some of the varient form of R_{o} property that have been investigated by different researchers as seperate entities. Khaleefa [10] has introduced and studied new types of seperation axioms termed by generalized $b-R_{o}$ and generalized $b-R_{1}$ by using generalized b-open sets due to Ganster and Steiner [8]. Tripathy and Acharjee [20] have done some works on bitopological spaces.

In this paper, we introduce the notion of pairwise $g b-R_{o}$ spaces and pairwise $g b-R_{1}$ spaces in bitopological spaces and investigate some of their properties. In particular, the notion of $(i, j)-g b$-kernel of a set is also defined in bitopological spaces.

2. Preliminaries

Throughout this paper, $\left(X, \tau_{1}, \tau_{2}\right)$ denotes a bitopological space on which no separation axioms are assumed. For a subset A of $X, i-i n t(A)$ and j $c l(A)$ denotes the i-interior and j-closure of A with respect to the topology τ_{i} and τ_{j} respectively, where $i, j \in\{1,2\}, i \neq j$.

Definition 2.1. A subset A of (X, τ) is called b-open, if $A \subset \operatorname{int}(c l(A)) \cup$ $c l(\operatorname{int}(A))$ and called b-closed if $X \backslash A$ is b-open.

One may refer to Andrijevic [6] for the above definition.
The following definitions are due to Al-Hawary and Al-Omari [4].

Definition 2.2. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is said to be (i, j)-b-open if $A \subset i-i n t(j-c l(A)) \cup j$-cl $(i-i n t(A))$. The complement of an (i, j) - b-open set is (i, j) - b-closed.
By (i, j) we mean the pair of topologies $\left(\tau_{i}, \tau_{j}\right)$.

Definition 2.3. Let A be a subset of a bitopological space (X, τ_{1}, τ_{2}). Then
(i) the (i, j) - b-closure of A denoted by $(i, j)-b c l(A)$, is defined by the intersection of all (i, j) - b-closed sets containing A.
(ii) the (i, j) - b-interior of A denoted by $(i, j)-b \operatorname{int}(A)$, is defined by the union of all (i, j) - b-open sets contained in A.

The following Definitions and results are due to Tripathy and Sarma [19].

Definition 2.4. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is said to be (i, j)-generalized b-closed (in short, (i, j)-gb-closed) set if (j, i)-bcl $(A) \subset U$ whenever $A \subset U$ and U is τ_{i}-open in X.

We denote the family of all (i, j)-gb-closed sets and (i, j) - $g b$-open sets $\operatorname{in}\left(X, \tau_{1}, \tau_{2}\right)$ by $G B C(i, j)$ and $G B O(i, j)$ respectively.

Definition 2.5. The (i, j)-generalized b-closure of a subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is the intersection of all (i, j)-gb-closed sets containing A and is denoted by $(i, j)-g b c l(A)$.

Lemma 2.1. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $(i, j)-g b$ open if and only if $U \subset(j, i)$-bint (A), whenever U is τ_{i}-closed and $U \subset A$.

Lemma 2.2. For any subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right), A \subset$ $(i, j)-g b c l(A)$.

Lemma 2.3. Let (X, τ_{1}, τ_{2}) be a bitopological space. If A is (i, j)-gb-closed subset of X, then $A=(i, j)-g b c l(A)$.

Lemma 2.4. A point $x \in(i, j)-g b c l(A)$ if and only if for every $(i, j)-g b-$ open set U containing $x, U \cap A \neq \emptyset$.

3. Pairwise $g b-R_{o}$ Spaces

Definition 3.1. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise generalized b - R_{o} (in short, pairwise $g b-R_{o}$) spaces if $(j, i)-g b c l(\{x\}) \subset U$, for every (i, j)-gb-open set U containing x and $i, j=1,2, i \neq j$.

Theorem 3.1. Let (X, τ_{1}, τ_{2}) be a bitopological space. Then the following statements are equivalent:
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b$ - R_{o} space.
(b) For any (i, j)-gb-closed set V and $x \notin V$, there exist a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$, for $i, j=1,2, i \neq j$.
(c) For any (i, j)-gb-closed set V and $x \notin V,(j, i)-g b c l(\{x\}) \cap V=\emptyset$ for $i, j=1,2, i \neq j$.

Proof. $(a) \Rightarrow(b)$ Let V be an (i, j)-gb-closed set and $x \notin V$. By (a), we have $(j, i)-g b c l(\{x\}) \subset X \backslash V$. Put $U=X \backslash(j, i)-g b c l(\{x\})$. Then U is (j, i)-gb-open and $V \subset X \backslash(j, i)$-gbcl $(\{x\})=U$. Thus $V \subset U$ and $x \notin U$.
(b) $\Rightarrow(c)$ Let V be a (i, j)-gb-closed set and $x \notin V$. By hypothesis, there exists a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$. Which implies $U \cap(j, i)-g b c l(\{x\})=\emptyset$ since U is (j, i)-gb-open. Hence $V \cap(j, i)$ $\operatorname{gbcl}(\{x\})=\emptyset$.
$(c) \Rightarrow(d)$ Let U be a (i, j)-gb-open set such that $x \in U$. Now, $X \backslash U$ is (i, j)-gb-closed and $x \notin X \backslash U$. By (c), $(j, i)-g b c l(\{x\}) \cap(X \backslash U)=\emptyset$. Which implies $(j, i)-g b c l(\{x\}) \subset U$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{o}$ space.

Theorem 3.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. Then X is pairwise $g b-R_{o}$ space if and only if for any two distinct points x and y of X, either $(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\})=\emptyset$ or $\{x, y\} \subset(i, j)-g b c l(\{x\}) \cap(j, i)-$ $g b c l(\{y\})$.

Proof. Let $(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\}) \neq \emptyset$ and $\{\mathrm{x}, \mathrm{y}\}$ is not contained in $(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\})$. Let $z \in(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\})$ and $x \notin(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\})$. Now, $x \notin(j, i)-g b c l(\{y\})$ implies $x \in X \backslash(j, i)-g b c l(\{y\})$, which is a (j, i)-gb-open set containing x. Since $z \in(j, i)-g b c l(\{y\})$, so $(i, j)-g b c l(\{x\})$ is not contained in $X \backslash(j, i)-g b c l(\{y\})$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is not pairwise $g b-R_{o}$ space.

Conversely, Let U be a (i, j) - $g b$-open set such that $x \in U$. Suppose (j, i) $\operatorname{gbcl}(\{x\})$ is not contained in U. Then there exists a $y \in(j, i)-g b c l(\{x\})$ such that $y \notin U$ and $(i, j)-g b c l(\{y\}) \cap U=\emptyset$, since $X \backslash U$ is (i, j)-gb-closed and $y \in X \backslash U$. Hence $\{\mathrm{x}, \mathrm{y}\}$ is not contained in $(i, j)-g b c l(\{y\}) \cap(j, i)$ $\operatorname{gbcl}(\{x\})$ and $(i, j)-g b c l(\{y\}) \cap(j, i)-g b c l(\{x\}) \neq \emptyset$.

Now, we introduce the concept of $(i, j)-g b$-kernel of a set and utilizing it to characterize the notion of pairwise $g b-R_{o}$ space.

Definition 3.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and $A \subset X$. The intersection of all (i, j) - $g b$-open sets containing A is called the (i, j)-gbkernel of A and is denoted by $(i, j)-g b-\operatorname{ker}(A)$.

The (i, j)-gb-kernel of a point $x \in X$ is the set $(i, j)-g b-\operatorname{ker}(\{x\})=\cap\{U: U$ is (i, j) - $g b$-open and $x \in U\}$.
$=\{y: x \in(i, j)-g b c l(\{y\})\}$.

Theorem 3.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and A be a subset of X. Then $(i, j)-g b-\operatorname{ker}(A)=\{x \in X:(i, j)-g b c l(\{x\}) \cap A \neq \emptyset\}$.

Proof. Let $x \in(i, j)-g b-\operatorname{ker}(A)$ and $(i, j)-g b c l(\{x\}) \cap A=\emptyset$. Therefore $(i, j)-g b c l(\{x\}) \subset X \backslash A$ and so $A \subset X \backslash(i, j)-g b c l(\{x\})$. But $x \notin X \backslash(i, j)$ $g b c l(\{x\})$, which is a $(i, j)-g b$-open sets containing A. Thus $x \notin(i, j)-g b-$ $\operatorname{ker}(A)$, a contradiction. Consequently, $(i, j)-g b c l(\{x\}) \cap A \neq \emptyset$.

Conversely, let $(i, j)-g b c l(\{x\}) \cap A \neq \emptyset$. If possible, let $x \notin(i, j)-g b-$ $\operatorname{ker}(A)$. Then there exists $U \in G B O(i, j)$ such that $x \notin U$ and $A \subset U$. Let $y \in(i, j)-g b c l(\{x\}) \cap A$. Then $y \in(i, j)-g b c l(\{x\})$ and $y \in A \subset U$. Hence $U \in G B O(i, j)$ such that $y \in U$ and $x \notin U$, which is a contradiction, since $y \in(i, j)-g b c l(\{x\}) \in G B C(i, j)$. Therefore $x \in(i, j)-g b-\operatorname{ker}(A)$. Hence $(i, j)-g b-\operatorname{ker}(A)=\{x \in X:(i, j)-g b c l(\{x\}) \cap A \neq \emptyset\}$.

Theorem 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. Then $\cap\{(i, j)-$ $g b c l(\{x\}): x \in X\}=\emptyset$ if and only if $(i, j)-g b-\operatorname{ker}(\{x\}) \neq X$, for every $x \in X$.

Proof. Assume that $\bigcap\{(i, j)-g b c l(\{x\}): x \in X\}=\emptyset$. Let $(i, j)-g b-$ $\operatorname{ker}(\{x\})=X$. If there is some $y \in X$, then X is the only (i, j)-gb-open set containing y. Which shows $y \in(i, j)-g b c l(\{x\})$, for every $x \in X$. Therefore $\bigcap\{(i, j)-g b c l(\{x\}): x \in X\} \neq \emptyset$, a contradiction. Hence $(i, j)-g b-$ $\operatorname{ker}(\{x\}) \neq X$, for every $x \in X$.

Conversely assume that $(i, j)-g b-\operatorname{ker}(\{x\}) \neq X$, for every $x \in X$. Let $\bigcap\{(i, j)-g b c l(\{x\}): x \in X\} \neq \emptyset$. If there is some $y \in X$ such that $y \in \bigcap\{(i, j)-g b c l(\{x\}): x \in X\}$, then every (i, j)-gb-open set containing y must contain every point of X. This shows that X is the only $(i, j)-g b-$ open set containing y. Therefore $(i, j)-g b-\operatorname{ker}(\{x\})=X$, a contradiction. Hence $\bigcap\{(i, j)-g b c l(\{x\}): x \in X\}=\emptyset$.

Theorem 3.5. Let (X, τ_{1}, τ_{2}) be a bitopological space. Then the following statements are equivalent :
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{o}$ space.
(b) For any $x \in X,(i, j)-g b c l(\{x\})=(j, i)-g b-\operatorname{ker}(\{x\})$, for $i, j=1,2$ and $i \neq j$.
(c) For any $x \in X,(i, j)-g b c l(\{x\}) \subset(j, i)-g b-\operatorname{ker}(\{x\})$, for $i, j=1,2$ and $i \neq j$.
(d) For any $x, y \in X, y \in(i, j)-g b-\operatorname{ker}(\{x\})$ if and only if $x \in(j, i)-g b-$ $\operatorname{ker}(\{y\})$, for $i, j=1,2$ and $i \neq j$.
(e) For any $x, y \in X, y \in(i, j)-g b c l(\{x\})$ if and only if $x \in(j, i)-g b c l(\{y\})$, for $i, j=1,2$ and $i \neq j$.
(f) For any (i, j) - $g b$-closed set V and $x \notin V$, there exist a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$, for $i, j=1,2$ and $i \neq j$.
(g) For each (i, j)-gb-closed set $V, V=\bigcap\{U: U$ is (j, i)-gb-open and
$V \subset U\}$, for $i, j=1,2$ and $i \neq j$.
(h) For each (i, j) - $g b$-open set $U, U=\bigcup\{V: V$ is (j, i) - $g b$-closed and $V \subset U\}$, for $i, j=1,2$ and $i \neq j$.
(i) For every non-empty subset A of X and for any (i, j) - $g b$-open set U such that $A \cap U \neq \emptyset$, there exists a (j, i) - $g b$-closed V such that $A \cap V \neq \emptyset$ and $V \subset U$, for $i, j=1,2$ and $i \neq j$.
(j) For any (j, i) - $g b$-closed set V and $x \notin V,(j, i)-g b c l(\{x\}) \cap V=\emptyset$, for $i, j=1,2$ and $i \neq j$.

Proof. $(a) \Rightarrow(b)$ Let $x, y \in X$. Then by Definition 3.2, $y \in(j, i)$ - $g b$ $\operatorname{ker}(\{x\}) \Leftrightarrow x \in(j, i)-g b c l(\{y\})$. Since X is pairwise gb-Ro space, therefore by Theorem 3.2, we have $x \in(j, i)-g b c l(\{y\}) \Leftrightarrow y \in(i, j)-g b c l(\{x\})$. Thus $y \in(j, i)-g b-\operatorname{ker}(\{x\}) \Leftrightarrow x \in(j, i)-g b c l(\{y\}) \Leftrightarrow y \in(i, j)-g b c l(\{x\})$. Hence $(i, j)-g b c l(\{x\})=(j, i)-g b-\operatorname{ker}(\{x\})$.
$(b) \Rightarrow(c)$ It is obvious.
$(c) \Rightarrow(d)$ Let $x, y \in X$ and $y \in(i, j)-g b-\operatorname{ker}(\{x\})$. Then by Definition $3.2, x \in(i, j)-g b c l(\{y\})$. Therefore by $(c), x \in(i, j)-g b c l(\{y\}) \subset(j, i)-g b$ $\operatorname{ker}(\{y\})$. Thus $x \in(j, i)-g b-\operatorname{ker}(\{y\})$. Similarly, we can prove the other part also.
$(d) \Rightarrow(e)$ Let $x, y \in X$ and $y \in(i, j)-g b c l(\{x\})$. Then by Definition $3.2, x \in(i, j)-g b-\operatorname{ker}(\{y\})$. Therefore by $(\mathrm{d}), y \in(j, i)-g b-\operatorname{ker}(\{x\})$ and so $x \in(j, i)-g b c l(\{y\})$. Similarly, we can prove the other part also.
$(e) \Rightarrow(f)$ Let V be a (i, j) - $g b$-closed set and $x \notin V$. Then for any $y \in V$, we have $(i, j)-g b c l(\{y\}) \subset V$ and $x \notin(i, j)-g b c l(\{y\})$. Therefore by (e), $y \notin(j, i)-g b c l(\{x\})$. That is there exists a (j, i) - $g b$-open set U_{y} such that $y \in U_{y}$ and $x \notin U_{y}$. Let $U=\bigcup_{y \in V}\left\{U_{y}: U_{y}\right.$ is (j, i) - $g b$-open, $y \in U_{y}$ and $\left.x \notin U_{y}\right\}$. Hence U is (j, i) - $g b$-open set such that $x \notin U$ and $V \subset U$.
$(f) \Rightarrow(g)$ Let V be an (i, j) - $g b$-closed set in X and $W=\bigcap\{U: U$ is (j, i) - $g b$-open and $V \subset U\}$. Clearly, $V \subset W$. Suppose that, $x \notin V$. Therefore by (f), there is a (j, i)-gb-open set U such that $x \notin U$ and $V \subset U$. So $x \notin W$ and thus $W \subset V$. Hence $V=W=\bigcap\{U: U$ is (j, i)-gb-open and $V \subset U\}$.

$$
(g) \Rightarrow(h) \text { It is obvious. }
$$

$(h) \Rightarrow(i)$ Let A be a non-empty subset of X and U be a (i, j)-gb-open set in X such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$. By (h), $U=\bigcup\{V: V$ is (j, i)-gb-closed and $V \subset U\}$. Then there is a (j, i)-gb-closed V such that $x \in V \subset U$. Therefore $x \in A \cap V$ and so $A \cap V \neq \emptyset$.
$(i) \Rightarrow(j)$ Let V be a (i, j)-gb-closed set such that $x \notin V$. Then $X \backslash V$ is (i, j)-gb-open set containing x and $\{x\} \cap(X \backslash V) \neq \emptyset$. Therefore by (i), there is a (j, i)-gb-closed set W such that $W \subset X \backslash V$ and $\{x\} \cap W \neq \emptyset$. Hence $(j, i)-g b c l(\{x\}) \subset X \backslash V$ and so $(j, i)-g b c l(\{x\}) \cap V=\emptyset$.
$(j) \Rightarrow(a)$ Follows from Theorem 3.1.

Theorem 3.6. In a pairwise $g b-R_{o}$ space $\left(X, \tau_{1}, \tau_{2}\right)$, for any $x \in X,(i, j)$ $\operatorname{gbcl}(\{x\}) \cap(j, i)-g b-\operatorname{ker}(\{x\})=\{x\}$ holds for $i, j=1,2$ and $i \neq j$, then $(i, j)-g b c l(\{x\})=\{x\}$.

Proof. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{o}$ space, therefore by Theorem 3.5 (b), we have $(i, j)-g b c l(\{x\})=(j, i)-g b-\operatorname{ker}(\{x\})$. Hence the result follows.

Theorem 3.7. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise $g b-R_{o}$ space, then for any $x, y \in$ X, either $(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{x\})=(i, j)-g b c l(\{y\}) \cap(j, i)-g b c l(\{y\})$ or $\{(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{x\})\} \cap\{(i, j)-g b c l(\{y\}) \cap(j, i)-g b c l(\{y\})\}=$ \emptyset.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise $g b-R_{o}$ space. Suppose that $\{(i, j)$ $\operatorname{gbcl}(\{x\}) \cap(j, i)-g b c l(\{x\})\} \cap\{(i, j)-g b c l(\{y\}) \cap(j, i)-g b c l(\{y\})\} \neq \emptyset$. Let $z \in$ $\{(i, j)-g b c l(\{x\}) \cap(j, i)-g b c l(\{x\})\} \cap\{(i, j)-g b c l(\{y\}) \cap(j, i)-g b c l(\{y\})\}$. Then $(i, j)-g b c l(\{z\}) \subset(i, j)-g b c l(\{x\}) \cap(i, j)-g b c l(\{y\})$ and $(j, i)-g b c l(\{z\}) \subset$ $(j, i)-g b c l(\{x\}) \cap(j, i)-g b c l(\{y\})$. Since $z \in(i, j)-g b c l(\{x\})$, we have by (e) of Theorem 3.5, $x \in(j, i)-g b c l(\{z\})$. Therefore $(j, i)-g b c l(\{x\}) \subset(j, i)$ $\operatorname{gbcl}(\{z\}) \subset(j, i)-g b c l(\{y\})$. Similarly, $z \in(j, i)-g b c l(\{x\})$ implies $(i, j)-$ $\operatorname{gbcl}(\{x\}) \subset(i, j)-\operatorname{gbcl}(\{y\}), z \in(i, j)-g b c l(\{y\})$ implies $(j, i)-g b c l(\{y\}) \subset$ $(j, i)-g b c l(\{x\})$ and also from $z \in(j, i)-g b c l(\{y\})$ implies $(i, j)-g b c l(\{y\}) \subset$ $(i, j)-g b c l(\{x\})$. Thus $(i, j)-g b c l(\{x\})=(i, j)-g b c l(\{y\})$ and $(j, i)-g b c l(\{x\})=$ $(j, i)-g b c l(\{y\})$. Hence the result follows.

Theorem 3.8. If (X, τ_{1}, τ_{2}) is a pairwise $g b-R_{o}$ space, then for any $x, y \in$ X, either $(i, j)-g b-\operatorname{ker}(\{x\}) \cap(j, i)-g b-\operatorname{ker}(\{x\})=(i, j)-g b-\operatorname{ker}(\{y\}) \cap(j, i)-$ $g b-\operatorname{ker}(\{y\})$ or $\{(i, j)-g b-\operatorname{ker}(\{x\}) \cap(j, i)-g b-\operatorname{ker}(\{x\})\} \cap\{(i, j)-g b-\operatorname{ker}(\{y\}) \cap$ $(j, i)-g b-\operatorname{ker}(\{y\})\}=\emptyset$.

Proof. The proof is similar to that of Theorem 3.7 which follows from Definition of $(i, j)-g b-\operatorname{ker}(\{x\})$ and Theorem 3.5.

4. Pairwise $g b-R_{1}$ Spaces

Definition 4.1. A bitopological space (X, τ_{1}, τ_{2}) is said to be pairwise generalized b - R_{1} (in short, pairwise $g b-R_{1}$) if for every pair of distinct points x and y of X such that $(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\})$, there exists a (j, i)-gb-open set U and an (i, j)-gb-open set V such that $U \cap V=\emptyset$ and $(i, j)-g b c l(\{x\}) \subset U,(j, i)-g b c l(\{y\}) \subset V$, for $i, j=1,2$ and $i \neq j$.

Theorem 4.1. If (X, τ_{1}, τ_{2}) is pairwise $g b-R_{1}$ space, then it is pairwise $g b-R_{o}$ space.

Proof. Suppose that (X, τ_{1}, τ_{2}) is pairwise $g b-R_{1}$ space. Let U be an (i, j) $g b$-open set containing x. Then for each $y \in X \backslash U,(j, i)$-gbcl $(\{x\}) \neq(i, j)$ $g b c l(\{y\})$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{1}$, there exists an (i, j)-gbopen set Uy and a (j, i)-gb-open set V_{y} such that $U_{y} \cap V_{y}=\emptyset$ and (i, j) $\operatorname{gbcl}(\{y\}) \subset V_{y},(j, i)-g b c l(\{x\}) \subset U_{y}$. Let $A=\bigcup\left\{V_{y}: y \in X \backslash U\right\}$. Then $X \backslash U \subset A, x \notin A$ and A is (j, i)-gb-open set. Therefore (j, i) $\operatorname{gbcl}(\{x\}) \subset X \backslash A \subset U$ and hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b$ - R_{o} space.

Theorem 4.2. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{1}$ if and only if for every $x, y \in X$ such that $(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\})$, there exists an (i, j)-gb-open set U and a (j, i)-gb-open set V such that $x \in V$, $y \in U$ and $U \cap V=\emptyset$, for $i, j=1,2$ and $i \neq j$.

Proof. Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{1}$ space. Let $x, y \in X$ such that $(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\})$. Then there exists an (i, j)-gb-open set U and a (j, i)-gb-open set V such that $x \in(i, j)-g b c l(\{x\}) \subset V$ and $y \in(j, i)-g b c l(\{y\}) \subset U$.

Conversely, suppose that there exists an (i, j)-gb-open set U and a (j, i) $g b$-open set V such that $x \in V, y \in U$ and $U \cap V=\emptyset$. Therefore (i, j) $\operatorname{gbcl}(\{x\}) \cap(j, i)-g b c l(\{y\})=\emptyset$. So by Theorem 3.2, $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{o}$ space. Then $(i, j)-g b c l(\{x\}) \subset V$ and $(j, i)-g b c l(\{y\}) \subset U$. Hence (X, τ_{1}, τ_{2}) is pairwise $g b-R_{1}$ space.

Theorem 4.3. Let (X, τ_{1}, τ_{2}) be a bitopological space. Then the following are equivalent:
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{1}$ space.
(b) For any $x, y \in X, x \neq y$ and $(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\})$ implies that there exists an (i, j)-gb-closed set G_{1} and a (j, i)-gb-closed set G_{2} such that $x \in G_{1}, y \notin G_{1}, y \in G_{2}, x \notin G_{2}$ and $X=G_{1} \cup G_{2}$, for $i, j=1,2$ and $i \neq j$.

Proof. $(a) \Rightarrow(b)$ Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{1}$ space. Let $x, y \in X$ such that $(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\})$. Therefore by Theorem 4.2, there exists an (i, j)-gb-open set V and a (j, i)-gb-open set U such that $x \in U, y \in V$ and $U \cap V=\emptyset$. Then $G_{1}=X \backslash V$ is (i, j)-gb-closed and $G_{2}=X \backslash U$ is (j, i)-gb-closed set such that $x \in G_{1}, y \notin G_{1}, y \in G_{2}$, $x \notin G_{2}$ and $X=G_{1} \cup G_{2}$.

$$
(b) \Rightarrow(a) \text { Let } x, y \in X \text { such that }(i, j)-g b c l(\{x\}) \neq(j, i)-g b c l(\{y\}) \text {. }
$$ Therefore for any $x, y \in X, x \neq y$, we have $(i, j)-g b c l(\{x\}) \cap(j, i)$ $\operatorname{gbcl}(\{y\})=\emptyset$. Then by Theorem 3.2, $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $g b-R_{o}$ space. By (b), there is an (i, j)-gb-closed set G_{1} and a (j, i) - $g b$-closed set G_{2} such that $x \in G_{1}, y \notin G_{1}, y \in G_{2}, x \notin G_{2}$ and $X=G_{1} \cup G_{2}$. Therefore $x \in X \backslash G_{2}=U$, which is (j, i)-gb-open and $y \in X \backslash G_{1}=V$, which is (i, j)-gb-open. Which implies that $(i, j)-g b c l(\{x\}) \subset U,(j, i)-g b c l(\{y\}) \subset V$ and $U \cap V=\emptyset$. Hence the result.

References

[1] A. A. Abo Khadra and A. A. Nasef: On extension of certain concepts from a topological space to a bitopological space, Proc. Math. Phys. Soc. Egypt, 79, pp. 91-102, (2003).
[2] T. A. Al-Hawary: On Generalized preopen sets, Proyecciones: revista de matematica, 31(4), pp. 63-76, (2013).
[3] T. A. Al-Hawary: Generalized preopen sets, Questions Answers Gen. Topology, 29 (1), pp. 73-80, (2011).
[4] T. Al-Hawary and A. Al-Omari: b-open and b-continuity in Bitopological spaces, Al-Manarah, 13(3), pp.89-101, (2007).
[5] A. Al-Omari and M. S. M. Noorani: On Generalized b-closed sets; Bull. Malays. Math. Sci. Soc., 32(1), pp.19-30, (2009).
[6] D. Andrijevic: On b-open sets, Mat. Vesnik, 48, pp. 59-64, (1996).
[7] T. Fukutake: On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35, pp. 19-28, (1985).
[8] M. Ganster and M. Steiner: On b τ-closed sets, Appl. Gen. Topol., 8(2), pp. 243-247, (2007).
[9] J. C. Kelly: Bitopological spaces, Proc. London Math. Soc.,3(13), pp. 71-89, (1963).
[10] H. A. Khaleefah: New types of separation axioms via generalised b open sets, Res. J. Mathematical and Statistical Sci., 1 (8), pp. 16-24, (2013).
[11] J. M. Mustafa: $b-R_{o}$ and $b-R_{1}$ spaces, Global J. Pure Appl. Math., 4(1), pp. 65-71, (2008).
[12] I. L. Reilly: On bitopological separation properties, Nanta Math., 5(2), pp. 14-25, (1974).
[13] I. L. Reilly: On pairwise R_{o} spaces, Ann. Soc. Sci. Bruxeles T., 88(III), pp. 293-296, (1974).
[14] B. Roy and M. N. Mukherjee: A unified theory for R_{o}, R_{1} and certain other separation properties and their varient forms, Bol. Soc. Paran. Math.,28(2), pp. 15-25, (2010).
[15] M. S. Sarsak and N. Rajesh: Special Functions on Bitopological Spaces, Internat. Math. Forum, 4 (36), pp. 1775-1782, (2009).
[16] J. Tong: On the separation axioms R_{o}, Glasnik Math., 18(38), pp. 149-152, (1983).
[17] B. C. Tripathy and S. Acharjee: On (γ, δ)-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33 (3), pp. 245-257, (2014).
[18] B. C. Tripathy and D. J. Sarma: On b-locally open sets in Bitopological spaces, Kyungpook Math. Jour., 51 (4), pp. 429-433, (2011).
[19] B. C. Tripathy and D. J. Sarma: On pairwise b-locally open and pairwise b-locally closed functions in bitopological spaces, Tamkang Jour. Math., 43 (4), pp. 533-539, (2012).
[20] B. C. Tripathy and D. J. Sarma: On weakly b-continuous functions in bitopological spaces, Acta Sci. Technol., 35 (3), pp. 521-525, (2013).
[21] B. C. Tripathy and D. J. Sarma: On pairwise strongly b-open and pairwise strongly b-closed functions in bitopological spaces, Int. J. Modern Mathematical Sci., 7 (3), pp. 276-286, (2013).
[22] B. C. Tripathy and D. J. Sarma: Generalized b-closed sets in Ideal bitopological spaces, Proyecciones J. Math., 33(3), pp. 315-324, (2014).
[23] B. C. Tripathy and D. J. Sarma: Generalized b-closed sets in bitopological spaces, (communicated).

Diganta Jyoti Sarma

Central Institute of Technology
Kokrajhar-783370, BTAD, Assam, India
e-mail: dj.sarma@cit.ac.in
and

Binod Chandra Tripathy

Department of Mathematics
Tripura University; Suryamaninagar
Agartala-799022; Tripura,
India
e-mail: tripathybc@rediffmail.com

