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Abstract

In this paper, we use fixed point theorems to prove the existence
and uniqueness of solution for a nonlinear fractional system with
boundary conditions. At the end we present two examples illustrat-
ing the obtained results.

Keywords: Fractional Rieman-Liouville derivative, Fractional dif-
ferential equation, Fixed Point Theorem.

Mathematics Subject Classification: 34B10, 26A33, 34B15.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172017000400727

http://dx.doi.org/10.4067/S0716-09172017000400727


728 A. Guezane-Lakoud, G. Rebiai and R. Khaldi

1. Introduction

In recent years, the theory of differential fractional equations has become
an interesting field to explore. It is to be noted that such theory has
many applications in several events existing in the real world, and also in
many sciences such as: engineering, physics, chemistry, biology, etc ..., [13].
Moreover, the study of the systems of fractional differential equations has
become more and more popular tool for controlling and modeling different
systems [2,7,15-17]. Thus the fixed point theory is a powerful mathematical
tool in the study of the existence, uniqueness, positivity and stability of
solutions, see [1,3-6,9-14].

In this work, we consider the following system of fractional differential
equations with boundary conditions:

(FS)

(
−Dα

0+u (t) = g (t) f (u (t)) ,0 < t < 1,
u (0) = u0 (0) = 0, au (1) + bu0 (1) = 0,

where Dα
0+ denotes the Reimann-Liouville fractional derivative, 2 < α < 3,

u = (u1, u2, ..., un)
T is an unknown function with

ui : [0, 1]→ R, g : [0, 1]→ R is a given function, f : Rn → Rn,
f (u) = (f1 (u1, u2, ..., un) , ..., fn (u1, u2, ..., un))

T , fi : R
n → R.

This paper is organized as follows: in Section 2, some preliminary ma-
terials to be used later are stated. In Section 3, we present and prove our
main results consisting of the existence and uniqueness of the solution of
(FS). Finally our study is ended by an example illustrating the obtained
results.

2. Preliminaries

In this section, we recall the basic definitions and lemmas from the frac-
tional calculus theory, see [13].

Definition 1. The Riemann-Liouville fractional integrals of order α of a
function h is defined as

Iαa+h (t) =
1

Γ(α)

R t
a

h(s)

(t−s)1−αds.

Definition 2. The Riemann-Liouville derivative of fractional order α > 0
for a function h is defined as

Dα
0+h (t) =

1
Γ(n−α)

³
d
dt

´n R t
0 (t− s)n−α−1 h (s) ds =

³
d
dt

´n
In−αh (t) ,

where n = [α] + 1 ([α] denotes the integer part of the real number α).
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Lemma 3. For α > 0, the general solution of the homogeneous equation

Dα
0+u (t) = 0,

is given by

u(t)=c0t
α−n + c1t

α−n−1 + + cn−2tα−2 + cn−1tα−1,

where ci, i = 1, 2, ..., n− 1, are arbitrary real constants.

Lemma 4. Let p, q ≥ 0, f ∈ L1 [a, b]. Then

Ip0+I
q
0+f (t) = Ip+q0+ f (t) = Iq0+I

p
0+f (t) .

3. Main results

Lemma 5. Let y ∈ C ([0, 1] ,R). Assume that a, b ∈ R such that a −
b (α− 1) 6= 0, then for i ∈ {1, .., n}, the linear nonhomogeneous problem

(Si) =

(
−Dα

0+ui (t) = y (t) , 0 < t < 1,
ui (0) = u0i (0) = 0, aui (1)− bu0i (1) = 0, i ∈ {1, .., n} ,

(3.1)

has the following solution

ui (t) =

Z 1

0
Gi (t, s) y (s) ds, i ∈ {1, .., n}(3.2)

where

Gi (t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− (t−s)

α−1

Γ(α) +
tα−1

a−b(α−1)

³
a

Γ(α) (1− s)α−1 − b
Γ(α−1) (1− s)α−2

´
, s ≤ t,

tα−1

a−b(α−1)

³
a

Γ(α) (1− s)α−1 − b
Γ(α−1) (1− s)α−2

´
, s ≥ t.

(3.3)



730 A. Guezane-Lakoud, G. Rebiai and R. Khaldi

Proof. Let ui be a solution of the fractional boundary value problem
(FS) . Using Lemma 3, we obtain

ui (t) = −Iα0+y (t) +Atα−1 +Btα−2 + Ctα−3,(3.4)

then, by multiplying (3.4) by t3−α, it yields
t3−αui (t) = −Iα0+y (t) tα−3 +At2 +Bt+ C.

According to the condition u (0) = 0, we obtain C = 0. Therefore,
differentiating (3.4), we have

u0i (t) = −Iα−10+ y (t) + (α− 1)Atα−2 + (α− 2)B.(3.5)

Multiplying (3.5) by t3−α, we obtain

t3−αu0i (t) = −Iα−10+ y (t) t3−α + (α− 1)At+ (α− 2)B.

(3.6)

From condition u0i (0) = 0, it follows B = 0, thus,

ui (t) = −Iα0+y (t) +Atα−1.(3.7)

Since aui (1)− bu0i (1) = 0, then

A =
a

a− b (α− 1)I
α
0+y (1)−

b

a− b (α− 1)I
α−1
0+ y (1) .(3.8)

By substituting A in (3.7) , we get

ui (t) =
R 1
0 Gi (t, s) y (s) ds. 2

Lemma 6. If a > 0 and b < 0, then the functions Gi are nonnegative,
continuous

and

Gi (t, s) ≤
1

Γ (α− 1) ,∀s, t ∈ [0, 1] , i ∈ {1, .., n} .(3.9)

Proof. The proof is direct, we omit it. 2

LetX be the Banach space of all functions u ∈ Cn [0, 1] = C [0, 1]×...×C [0, 1]
with the norm k.k defined by kuk = Pi=n

i=1 maxt∈[0,1] |ui (t)| . Define the in-
tegral operator T : X → X by T (u) = (T1u, T2u, ..., Tnu) , where
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(Tiu) (t) =

Z 1

0
Gi (t, s) g (s) fi (u (s)) ds, i = 1, ..., n.(3.10)

Lemma 7. The function u ∈ X is a solution of the system (FS) if and
only if Tiu (t) = u (t), for all t ∈ [0, 1] , ∀i ∈ {1, ..., n} .

The first main statement in this work is the uniqueness of solution of
the boundary problem (FS) .

Theorem 8. Assume that
i) fi ∈ C (Rn,R) , g ∈ L1 ([0, 1] ,R)
ii) There exists a constant L > 0 such that

|fi (x1, .., xn)− fi (y1, ..., yn)| ≤ L
nX
i=1

|xi − yi|(3.11)

and

nL kgkL1[0,1]
Γ (α− 1) < 1,(3.12)

for all t ∈ [0, 1] and for all xi, yi ∈ R, i = 1, ...n. Then, the boundary value
problem (FS) has a unique solution in X.

Proof. We will use the Banach contraction principle to prove that the
operator T has a fixed point. Using the properties of the function Gi, it
yields

|Tix (t)− Tiy (t)| ≤
Z 1

0
|Gi (t, s)| |g (s)| |fi (x (s))− fi (y (s))| ds

≤ L

Γ (α− 1)

Z 1

0
|g (s)|

nX
i=1

|xi (s)− yi (s)| ds

≤ L

Γ (α− 1) kgkL1[0,1] kx− yk ,

then by taking the maximum over t ∈ [0, 1], it follows

t ∈ [0, 1]max |Tix (t)− Tiy (t)| ≤
L

Γ (α− 1) kgkL1[0,1] kx− yk .(3.13)
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Summing the n inequalities in (3.13), it yields

kTx− Tyk ≤
nL kgkL1[0,1]
Γ (α− 1) kx− yk .

Since
nL kgkL1[0,1]
Γ (α− 1) < 1, then T is a contraction. As a consequence of

Banach fixed-point theorem, we deduce that T has a fixed point that is the
unique solution of the (FS), this achieves the proof. 2

The second mains statement of this work is an existence result for the
boundary problem (FS).

Theorem 9. Assume that fi (0) 6= 0, i ∈ {1, .., n} , there exist η > 0
and a nonnegative function Ψ ∈ C (Rn, (0,∞)) satisfying Ψ (x1, ..., xn) ≤
Ψ (y1, ..., yn) for 0 ≤ xi ≤ yi, i = 1, ..., n. If

|fi (u)| ≤ Ψ (|u|) ,(3.14)

for all t ∈ [0, 1] and all u ∈ Rn and

n

Γ (α− 1)Ψ (η, ..., η) kgkL1[0,1] ≤ η,(3.15)

then, the problem (FS) has at least one nontrivial solution u∗ ∈ X.

For the proof of Theorem we need the nonlinear alternative of Leray-
Schauder:

Lemma 10. Let F be a Banach space and Ω a bounded open subset of F ,
0 ∈ Ω. Let T : Ω → F be a completely continuous operator. Then, either
there exists x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed
point x ∈ Ω of T .

Proof. of Theorem 9. The continuity of the operator T follows
from the continuity of f . Set Bη = {u ∈ X : kuk ≤ η} . Let us prove that
T : Bη → X is a completely continuous operator. From (3.14), we have for
each t ∈ [0, 1]

|Tiu (t)| ≤
Z 1

0
|Gi (t, s)| |g (s)| |fi (u (s))| ds(3.16)

≤ 1

Γ (α− 1)

Z 1

0
|g (s)|Ψ (|u (s)|) ds(3.17)
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=
1

Γ (α− 1)

Z 1

0
|g (s)|Ψ (|u1 (s)| , ..., |u2 (s)|) ds(3.18)

≤ 1

Γ (α− 1)Ψ (η, ..., η) kgkL1[0,1](3.19)

Taking the supremum over [0, 1], then summing the obtained inequali-
ties according to i from 1 to n, we get

kTuk ≤
nΨ (η, ..., η) kgkL1[0,1]

Γ (α− 1)(3.20)

which implies that T (Bη) is uniformly bounded.
Let us show that (Tu) is equicontinuous, u ∈ Bη. Let t1, t2 ∈ [0, 1], t1 < t2,
then

|Tiu (t1)− Tiu (t2)| ≤
Z 1

0
|Gi (t1, s)−Gi (t2, s)| |g (s)| |fi (u (s))| ds

≤
Z t1

0
|Gi (t1, s)−Gi (t2, s)| |g (s)| |fi (u (s))| ds

+

Z t2

t1
|Gi (t1, s)−Gi (t2, s)| |g (s)| |fi (u (s))| ds

+

Z 1

t2
|Gi (t1, s)−Gi (t2, s)| |g (s)| |fi (u (s))| ds

then
|Tiu (t1)− Tiu (t2)| ≤

Ψ (η, ..., η)

Γ (α)

∙Z t1

0

h³
tα−12 − tα−11

´
+ (t2 − s)α−1 − (t1 − s)α−1

i
|g (s)| ds

+

Z t2

t1

h³
tα−12 − tα−11

´
+ (t2 − s)α−1

i
|g (s)| ds

+

Z 1

t2

h³
tα−12 − tα−11

´i
|g (s)| ds

¸

≤ Ψ (η, ..., η)

Γ (α)

∙h³
tα−12 − tα−11

´
+ (t2 − t1)

α−1
i Z t1

0
|g (s)| ds

+
h³
tα−12 − tα−11

´
+ (t2 − t1)

α−1
i Z t2

t1
|g (s)| ds
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+
h³
tα−12 − tα−11

´i Z 1

t2
|g (s)| ds

≤ Ψ (η, ..., η)

Γ (α)

h
3
³
tα−12 − tα−11

´
+ 2 (t2 − t1)

α−1
i Z 1

0
|g (s)| ds.

As t1 → t2, the right-hand side of the above inequality tends to zero.
By Ascoli-Arzela theorem, we conclude that the operator T : X → X is
completely continuous.

Now we apply the nonlinear alternative of Leray-Schauder. Let u ∈
∂Bη, such that u = λTu for some 0 < λ < 1. We have

ui (t) = λTiu (t) ≤ t ∈ [0, 1]max |Tiu (t)|

≤ 1

Γ (α− 1)Ψ (η, ..., η) kgkL1[0,1] .

Taking the supremum over [0, 1], then summing the obtained inequali-
ties according to i from 1 to n, we get

kuk ≤ n

Γ (α− 1)Ψ (η, ..., η) kgkL1[0,1] .

taking into account (3.15) we conclude

kuk < η,(3.21)

that contradicts the fact that u ∈ ∂Bη. So, we conclude that T has at
least one fixed point u∗ ∈ Bη and then the (FS) has a nontrivial solution
u∗ ∈ Bη.

2

4. Examples

In this section, we give examples to illustrate the usefulness of our main
results.

Example 1. Consider the following two-dimensional fractional order
system

(Si) =

⎧⎪⎪⎨⎪⎪⎩
D

5
2

0+u1 (t) = 2t
e
−(u21+u22)
1+u21+u

2
2
, D

5
2

0+u2 (t) = 2t
e−u

2
1

1+u21+u
2
2
,

u1 (0) = 0, u
0
1 (0) = 0, u2 (0) = 0, u

0
2 (0) = 0,

au1 (1)− bu01 (0) = 0, au2 (1)− bu02 (0) = 0.

(4.1)
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We have α = 5
2 , g(t) = 2t, f1 (u1, u2) =

e
−(u21+u22)
1+u21+u

2
2
, f2 (u1, u2) =

e−u
2
1

1+u21+u
2
2
,

fi ∈ C
¡
R2,R

¢
, fi (0) 6= 0. If we choose Ψ (u1, u2) = 1

1+u21+u
2
2
, then

|fi (u1, u2)| ≤ 1
1+u21+u

2
2
= Ψ (|u1| , |u2|) .

For η = 2, we get
n

Γ (α− 1)Ψ (η, η) kgkL1[0,1] ≤
2

Γ
³
3
2

´
(1 + 2η2)

= 0.250 75 ≤ η.

Then, according to the Theorem 9, the boundary value problem (4.1)
has at least one fixed point u∗ ∈ B2.

Example 2. Consider the following two-dimensional fractional order
system

(Si) =

⎧⎪⎨⎪⎩
D

5
2

0+u1 (t) =
e−t

10 (u1 − u2) , D
5
2

0+u2 (t) =
e−t

10 (u1 + 1) ,
u1 (0) = 0, u

0
1 (0) = 0, u2 (0) = 0, u

0
2 (0) = 0,

au1 (1)− bu01 (0) = 0, au2 (1)− bu02 (0) = 0.

(4.2)

We have α = 5
2 , g(t) =

e−t

10 , f1 (u1, u2) =
e−t

10 (u1 − u2) , f2 (u1, u2) =
e−t

10 (u1 + 1),fi ∈ C
¡
R2,R

¢
, then

|fi (x1, x2)− fi (y1, y2)| ≤ L
P2

i=1 |xi − yi|

with L = 1 and K =
2
¡
1− e−1

¢
10Γ

³
3
2

´ = 0.142 65 < 1, then hypotheses of

Theorem 8 are satisfied. So, the boundary value problem (4.2) has a unique
solution u ∈ X.
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