Some new generalized I-convergent difference sequence spaces defined by a sequence of moduli

Mohammad Aiyub

Resumen


In this articleweintroduce thesequencespace c0(F,p, A™) and I100 (F,p, A^) for the of sequence of modulii F = (/¾) and given some inclusion relations. These results here proved are analogus to those by M.Aiyub [1](Global Journal of Science Frontier Research Mathematics and Decision Sciences 12(9)(2012),32-36)

Palabras clave


Ideal ; Filter ; Sequence of moduli ; Difference sequence space ; I-convergent sequence space.

Texto completo:

PDF

Referencias


M. Aiyub, Some generalized I-convergent difference sequence spaces defined by a Moduli sequence, G. J. S. F. R. Math., 12 (9), pp. 32-36, (2012).

C¸. A. Bektas, R. C¸ olak, Generalized difference sequence spaces defined by a sequence of moduli, Soochow. J. Math., 29 (2), pp. 215-220, (2003).

V. K. Bhardwaj and N. Singh, On some sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 30, pp. 809-817, (1999).

R.C¸ olak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (3), pp. 483-492, (1997).

K. Demirci, I-limit superior and limit inferior, Math.Commun., 6(, pp. 165-172, (2001).

K. Dems, On I-Cauchy sequences, Real Analysis Exchange., 30, pp. 123-128, (2005).

A. Esi and M.Isik, Some generalized difference sequence spaces, Thai J. Math.,3(2), pp. 241-247, (2005).

M. Et, On some topological properties of generalized difference sequence spaces, Internat J. Math, Math.Soc., 24 (11), pp. 785-791, (2000).

M. Et and A. Esi, On K¨othe-Toeplitz duals of generalized difference sequence spaces, Bull Malysian Math., 31, pp. 275-278, (1980).

H. Fast, Sur Ia convergence statistique, Colloq. Math., 2, pp. 241-244, (1951).

J.A. Fridy, On statistical convergence, Analysis., 5, pp. 301-313, (1985).

J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 11, pp. 1187-1192, (1993).

A. K. Gaur and M. Mursaleen, Difference sequence spaces defined by a sequence of moduli,Demonstratio Math., 31, pp. 275-278, (1998).

V. A. Khan, Some inclusion relations between the difference sequence spaces defined by sequence of moduli, J. Indian. Math. Soc., 73 (1-2), pp. 77-81, (2006).

V. A. Khan, Some new generalized difference sequence spaces defined by a sequence of Moduli, App. Math. J. Chinese. Univ., 26 (11), pp. 104-108, (2006).

V. A. Khan and K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of Moduli. j. Math. Comput. Sci., 2 (2), pp. 265-273, (2012).

H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24, pp. 169-176, (1981).

E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, Acta Comment. Univ. Tartu., 960, pp. 41-50, (1993).

E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of modulii, Acta Comment. Univ. Tartu., 970, pp. 65-72, (1994).

P. Kostyrko, T.S¸alat and W. Wilczynski, I-Convergence, Real Analysis Exchange., 26, pp. 669-686, (2000).

I. J. Maddox, Sequence spaces defined by a modulus, Math. Camb. Phil. Soc., 100, pp. 161-166, (1986).

H. Nakano, Concave modulars, J.Math Soc. Japan., 5, pp. 29-49, (1953).

K. Raj and S. K. Sharma., Difference sequence spaces defined by sequence of modulus function, Proyecciones Journal of Mathematics., 30, pp. 189-199, (2011).

K. Raj and S. K. Sharma., Some difference sequence spaces in a 2- normed spaces using ideal convergence and Musielak Orlicz function, Far East Journal of Mathematical Sciences, 54(2), pp. 149-161, (2011).

W. H. Ruckle, On perfect Symmetric BK-spaces, Math. Ann., 175, pp. 121-126, (1968).

W. H. Ruckle, Symmetric coordinate space and symmetric bases, Canad, J. Math., 19,pp. 828-838, (1967).

W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded Canad. J. Math., 25(5), pp. 973-975, (1973).

E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 30, pp. 459-464, (1999).

T. S¸alat, On statisticaly convergent sequences of real numbers, Math. Slovaca., 30, pp. 139-150, (1980).

T. S¸alat, B. C. Tripathy and M.Ziman, On some properties of Iconvergence, Tatra Mt. Math.Publ., 28, pp. 279-286, (2004).

B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca, 59(4), pp. 485-494, (2009).

B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces de- fined by orlicz function, Acta Appl. Math. Sinica, 27 (1), pp. 149-154, (2011).




DOI: http://dx.doi.org/10.4067/S0716-09172013000200005

Enlaces refback

  • No hay ningún enlace refback.