Functional equations of Cauchy’s and d’Alembert’s Type on Compact Groups

Authors

  • Abdellatif Chahbi Ibn Tofail University.
  • Brahim Fadli Ibn Tofail University.
  • Samir Kabbaj Ibn Tofail University.

DOI:

https://doi.org/10.4067/S0716-09172015000300007

Keywords:

Non-abelian Fourier transform, Representation of a compact group.

Abstract

Using the non-abelian Fourier transform, we find the central continuous solutions of the functional equation

 where G is an arbitrary compact group, 

and σ is a continuous automorphism of G, such that σn = I. We express the solutions in terms of the unitary (group) characters of G.

Author Biographies

Abdellatif Chahbi, Ibn Tofail University.

Department of Mathematics.

Brahim Fadli, Ibn Tofail University.

Department of Mathematics.

Samir Kabbaj, Ibn Tofail University.

Department of Mathematics.

References

[1] M. Akkouchi, B. Bouikhalene, and E. Elqorachi,Functional equations and K-spherical functions. Georgian.Math.J, 15, pp. 1-20, (2008).

[2] J. An and D. Yang, Nonabelian harmonic analysis and functional equations on compact groups. J. Lie Theory, 21, pp. 427-455, (2011).

[3] R. Badora, On a joint generalization of Cauchy’s and d’Alembert’s functional equations, Aequationes Math. 43, pp. 72-89, (1992).

[4] W. Chojnacki, Group representations of bounded cosine functions. J. Reine Angew. Math., 478, pp. 61-84, (1986).

[5] W. Chojnacki, On some functional equation generalizing Cauchy’s and d’Alembert’s functional equations. Colloq. Math., 55, pp. 169-178, (1988).

[6] W. Chojnacki, On group decompositions of bounded cosine sequences. Studia Math., 181, pp. 61-85, (2007).

[7] W. Chojnacki,On uniformly bounded spherical functions in Hilbert space, Aequationes Math., 81, pp. 135-154, (2011).

[8] T.M.K. Davison, D’Alembert’s functional equation on topological groups. Aequationes Math., 76, pp. 33-53, (2008).

[9] T.M.K. Davison, D’Alembert’s functional equation on topological monoids. Publ. Math. Debrecen, 75, pp. 41-66, (2009).

[10] E. Elqorachi, M. Akkouchi, A. Bakali, B. Bouikhalene, Badora’s equation on non-Abelian locally compact groups. Georgian Math. J., 11, pp. 449-466, (2004).

[11] P. de Place Friis, D’Alembert’s and Wilson’s equation on Lie groups. Aequationes Math., 67, pp. 12-25, (2004).

[12] G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, (1995).

[13] H. Shin’ya, Spherical matrix functions and Banach representability for lo- cally compact motion groups. Japan. J. Math. (N.S.), 28, pp. 163- 201, (2002).

[14] H. Stetkær, D’Alembert’s functional equations on metabelian groups, Aequationes Math., 59, pp. 306-320, (2000).

[15] H. Stetkær, D’Alembert’s and Wilson’s functional equations on step 2 nilpotent groups, Aequationes Math., 67, pp. 241-262, (2004).

[16] H. Stetkær, Properties of d’Alembert functions, Aequationes Math., 77, pp. 281-301, (2009).

[17] H. Stetkær, Functional Equations on Groups. World Scientific Publishing Co. (2013).

[18] H. Stetkær, D’Alembert’s functional equation on groups, Banach Center Publ. 99, pp. 173-191, (2013).

[19] D. Yang, Factorization of cosine functions on compact connected groups, Math. Z., 254, pp. 655-674, (2006).

[20] D. Yang, Functional Equations and Fourier Analysis, Canad. Math. Bull. 56, pp. 218-224, (2013).

How to Cite

[1]
A. Chahbi, B. Fadli, and S. Kabbaj, “Functional equations of Cauchy’s and d’Alembert’s Type on Compact Groups”, Proyecciones (Antofagasta, On line), vol. 34, no. 3, pp. 297-305, 1.

Issue

Section

Artículos

Most read articles by the same author(s)

1 2 > >>