Some I-convergent triple sequence spaces defined by a sequence of modulus function

Bimal Chandra Das

Resumen


In this article we introduce the notion of I-convergent triple sequence spaces cOI3(F), cI3(F), l00I3(F), mI3(F) and mOI3(F) defined by a sequence of modulii F = (fpqr) and study some of their algebraic and topological properties like solidity, symmetricity, convergence free etc. We also prove some inclusion relation involving these sequence spaces.


Palabras clave


Triple sequence; Modulus function; I- convergence; Ideal; filter.

Texto completo:

PDF

Referencias


A. J. Datta, A. Esi, B. C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4(2), pp. 16-22, (2013).

A. Sahiner, B. C. Tripathy, Some I-related properties of Triple sequences, Selcuk. J. Appl. Math., 9(2), pp. 9-18, (2008).

A. Sahiner, M. Gurdal, K. Duden, Triple sequences and their statistical convergence, Selcuk. J. Appl. Math., 8(2), pp. 49-55, (2007).

B. C. Tripathy, Statistically convergent double sequence, Tamkang. J. Math., 34(3), pp. 231-237, (2003).

B. C. Tripathy, M. Sen, Paranormed I-convergent double sequence spaces associated with multiplier sequences, KYUNGPOOK Math. J. 54, pp. 321-332, (2014).

B.C. Tripathy, R. Goswami, On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones J. Math., 33(2) , pp. 157-174, (2014).

B.C. Tripathy, R. Goswami, Vector valued multiple sequences defined by Orlicz functions, Bol. Soc. Paran. Mat., 33 (1), pp. 67-79, (2015).

B.C. Tripathy, R. Goswami, Multiple sequences in probabilistic normed spaces, Afrika Matematika, 26 (5-6), pp. 753-760, (2015).

B.C. Tripathy, R. Goswami, Fuzzy real valued p-absolutely summable multiple sequences in probabilistic normed spaces, Afrika Matematika, 26 (7-8), pp. 1281-1289, (year).

E. Savas, R. F. Patterson, Double sequece spaces defined by a modulus, Math. Slovaca, 61, pp. 245-256, (2011).

H. Fast, Surla convergence statistique, Colloq. Math., 2, pp. 241-244, (1951).

H. Nakano, Concave modulars, J. Math. Soc. Japan, 5, pp. 29-49, (1953).

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, pp. 361-375, (1959).

P. Kostyrko, T. Salat, W. Wilczynski, I-convergence, Real Anal. Exch. 26(2), pp. 669-686, (2000).

S. Debnath, B. C. Das, Some new type of difference triple sequence spaces, Palestine J. Math.Vol. 4(2), pp. 284-290, (2015).

S. Debnath, B. Sharma, B. C. Das, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Opti. 6(1) , pp. 71-79, (2015).

S. Debnath, B. C. Das, D. Bhattacharya, J. Debnath, Regular matrix transformation on triple sequence spaces. Bol. Soc. Paran. Mat. 35(1), pp. 85-96, (2017)(In Press)

T. Salat, B. C. Tripathy, M. Ziman, On some properties of Iconvergence, Tatra Mountain Mathematical Publications, pp. 669-686, (2000).

V. Kumar, On I-convergence of double sequences Math. Commun., 12, pp. 171-181, (2007).

V. A. Khan, N. Khan, On some I-convergent double sequence space defined by a modulus function, Scientific Research, 5, pp. 35-40, (2013).

V. A. Khan, N. Khan, On some I-convergent double sequence spaces defined by a sequence of modulii, Ilirias Journal of Mathematics, 4(2), pp. 1-8, (2013).




DOI: http://dx.doi.org/10.4067/S0716-09172017000100007

Enlaces refback

  • No hay ningún enlace refback.