A note on kkt-invexity in nonsmooth continuous-time optimization

Valeriano Antunes de Oliveira, Marko Antonio Rojas Medar, Adilson José Vieira Brandão

Resumen


We introduce the notion of KKT-invexity for nonsmooth continuoustime nonlinear optimization problems and prove that this notion is a necessary and sufficient condition for every KKT solution to be a global optimal solution.


Palabras clave


Nonsmooth continuous-time optimization ; KKT conditions ; KKT-invexity.

Texto completo:

PDF

Referencias


R. Bellman, Bottleneck problems and dynamics programming, Proc. Nat. Acad. Sci. U. S. A., 39, pp. 947-951, (1953).

A. J. V. Brand˜ao, M. A. Rojas-Medar and G.N. Silva, Nonsmooth continuous-time optimization problems: necessary conditions, Comp. Math. with Appl., 41, pp. 1477-1486, (2001).

F. H. Clarke, Optimization and nonsmooth analysis, Classics in Applied Mathematics 5, SIAM, (1990).

M. A. Hanson, On sufficiency of Kuhn-Tucker conditions, J. Math. Anal. Appl., 30, pp. 545-550, (1981).

D. H. Martin, The essence of invexity, J. Optim. Theory Appl., 47, pp. 65-76, (1985).

V. A. de Oliveira and M.A. Rojas-Medar, Continuous-time optimization problems involving invex functions, J. Math. Anal. Appl., 327, pp. 1320-1334, (2007).

M. A. Rojas-Medar, A.J.V. Brand˜ao and G.N. Silva, Nonsmooth continuous-time optimization problems: sufficient conditions, J. Math. Anal.Appl., 227, pp. 305-318, (1998).

G. J. Zalmai, A continuous-time generalization of Gordan’s transposition theorem, J. Math. Anal. Appl., 110, pp. 130-140, (1985).

G. J. Zalmai, The Fritz John and Kuhn-Tucker optimality conditions in continuous-time nonlinear programming, J. Math. Anal. Appl., 110, pp. 503-518, (1985).




DOI: http://dx.doi.org/10.4067/S0716-09172007000300005

Enlaces refback

  • No hay ningún enlace refback.