The total detour monophonic number of a graph

A. P. Santhakumaran, P. Titus, K. Ganesamoorthy

Resumen



Palabras clave


Detour monophonic set ; Detour monophonic number ; Total detour monophonic set ; Total detour monophonic number

Referencias


BUCKLEY, F. (1990) Distance in Graphs. Redwood City, CA: Addison-Wesley.

DOURADO, M. C. (2008) Algorithmic Aspects of Monophonic Convexity. EN: Electronic Notes in Discrete Mathematics, 30. [s.l.: s.n.], 177-182.

HARARY, F. (1969) Graph Theory. [s.l.]: Addison-Wesley.

SANTHAKUMARAN, A. P. (2011) Monophonic Distance in Graphs. EN: Discrete Mathematics, Algorithms and Applications, 3(2). [s.l.: s.n.], 159-169.

SANTHAKUMARAN, A. P. (2012) A Note on “Monophonic Distance in Graphs”. EN: Discrete Mathematics, Algorithms and Applications, 4(2). [s.l.: s.n.].

TITUS, P. (2016) On the Detour Monophonic Number of a Graph. EN: Ars Combinatoria, 129. [s.l.: s.n.], 33-42.

TITUS, P. (2013) The Detour Monophonic Number of a Graph. EN: J. Combin. Math. Combin. Comput., 84. [s.l.: s.n.], 179-188.

TITUS, P. (2016) The Connected Detour Monophonic Number of a Graph. EN: TWMS Journal of Applied and Engineering Mathematics, 6(1). [s.l.: s.n.], 75-86.


Enlaces refback

  • No hay ningún enlace refback.