The total detour monophonic number of a graph

  • A. P. Santhakumaran Hindustan University.
  • P. Titus University College of Engineering Nagercoil.
  • K. Ganesamoorthy Anna University.
Palabras clave: Detour monophonic set, Detour monophonic number, Total detour monophonic set, Total detour monophonic number

Resumen

Biografía del autor

A. P. Santhakumaran, Hindustan University.
Department of Mathematics.
P. Titus, University College of Engineering Nagercoil.
Department of Mathematics.
K. Ganesamoorthy, Anna University.
Department of Mathematics, Coimbatore Institute of Technology. Government Aided Autonomous Institution Coimbatore.

Citas

[1] BUCKLEY, F. (1990) Distance in Graphs. Redwood City, CA: Addison-Wesley.

[2] DOURADO, M. C. (2008) Algorithmic Aspects of Monophonic Convexity. EN: Electronic Notes in Discrete Mathematics, 30. [s.l.: s.n.], 177-182.

[3] HARARY, F. (1969) Graph Theory. [s.l.]: Addison-Wesley.

[4] SANTHAKUMARAN, A. P. (2011) Monophonic Distance in Graphs. EN: Discrete Mathematics, Algorithms and Applications, 3(2). [s.l.: s.n.], 159-169.

[5] SANTHAKUMARAN, A. P. (2012) A Note on “Monophonic Distance in Graphs”. EN: Discrete Mathematics, Algorithms and Applications, 4(2). [s.l.: s.n.].

[6] TITUS, P. (2016) On the Detour Monophonic Number of a Graph. EN: Ars Combinatoria, 129. [s.l.: s.n.], 33-42.

[7] TITUS, P. (2013) The Detour Monophonic Number of a Graph. EN: J. Combin. Math. Combin. Comput., 84. [s.l.: s.n.], 179-188.

[8] TITUS, P. (2016) The Connected Detour Monophonic Number of a Graph. EN: TWMS Journal of Applied and Engineering Mathematics, 6(1). [s.l.: s.n.], 75-86.
Publicado
2017-06-02
Cómo citar
Santhakumaran, A., Titus, P., & Ganesamoorthy, K. (2017). The total detour monophonic number of a graph. Proyecciones. Journal of Mathematics, 36(2), 209-224. https://doi.org/10.4067/S0716-09172017000200209
Sección
Artículos