On the toral rank conjecture and some consequences
DOI:
https://doi.org/10.4067/10.4067/S0716-09172017000200299Keywords:
Conjetura del rango toralAbstract
Downloads
Download data is not yet available.
References
[1] ALLDAY, C. (1978) Lie group actions on spaces of finite rank. EN: Quart. J. Math. Oxford (2) 29. [s.l.: s.n.], 63-76.
[2] ALLDAY, C. (1993) Cohomological methods in transformation groups, volume 32 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.
[3] ALLDAY, C. (1985) On the localization theorem at the cochain level and free torus actions, Algebraic topology Göttingen 84. EN: Procedings, Springer lect. Notes in Math 1172. [s.l.: s.n.], 1-16.
[4] AMANN, M. (2012) Cohomological consequences of almost free torus actions. [s.l.: s.n.]. arXiv:1204.6276.
[5] BOREL, A. (1959) Seminar on transformation groups. EN: Ann. of math Studies, 46. New Jersey: Princeton.
[6] BROWN, E. H. (1959) Twisted tensor product I. EN: Ann. of Math., 69. [s.l.: s.n.], 223-246.
[7] FÉLIX, Y. (2001) Rational homotopy theory. EN: Graduate Texts in Mathematics, 205. New York: Springer-Verlag.
[8] FÉLIX, Y. (2008) Algebraic models in geometry. EN: Oxford Graduate Texts in Mathematics, 17. Oxford: Oxford University Press.
[9] HALPERIN, S. (1977) Finiteness in the minimal models of Sullivan. EN: Trans. A. M. S. 230. [s.l.: s.n.], 173-199.
[10] HALPERIN, S. (1985) Rational homotopy and torus actions. EN: London Math. Soc. Lecture Note Series 93. [s.l.]: Cambridge Univ. Press, 293-306.
[11] HILALI, M. R. (2000) Sur la conjecture de Halperin relative au rang torique. EN: Bull. Belg. Math. Soc. Simon Stevin 7(2). [s.l.: s.n.], 221-227.
[12] HILALI, M. R. (1990) Actions du tore T n sur les espaces simplement connexes. Thèse à l’Université catholique de Louvain.
[13] HSIANG, W. Y. (1975) Cohomology theory of topological transformation groups, Berlin: Springer.
[14] JAMES, I. M. (1995) Reduced product spaces. EN: Ann. of math 82. [s.l.: s.n.], 170-197.
[15] PUPPE, V. (2009) Multiplicative aspects of the Halperin-Carlsson conjecture. EN: Georgian Mathematical Journal, 16:2. [s.l.: s.n.], 369379. arXiv 0811.3517.
[16] PUPPE, V. (1987) On the torus rank of topological spaces, Proceding Baker. [s.l.: s.n.].
[17] SHAFAREVICH, I. R. (1994) Basic Algebraic Geometry, 2 Vols.. [s.l.]: Springer.
[18] USTINOVSKII, YU. (2012) On almost free torus actions and Horroks conjecture. [s.l.: s.n.]. arXiv 1203.3685v2.
[2] ALLDAY, C. (1993) Cohomological methods in transformation groups, volume 32 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.
[3] ALLDAY, C. (1985) On the localization theorem at the cochain level and free torus actions, Algebraic topology Göttingen 84. EN: Procedings, Springer lect. Notes in Math 1172. [s.l.: s.n.], 1-16.
[4] AMANN, M. (2012) Cohomological consequences of almost free torus actions. [s.l.: s.n.]. arXiv:1204.6276.
[5] BOREL, A. (1959) Seminar on transformation groups. EN: Ann. of math Studies, 46. New Jersey: Princeton.
[6] BROWN, E. H. (1959) Twisted tensor product I. EN: Ann. of Math., 69. [s.l.: s.n.], 223-246.
[7] FÉLIX, Y. (2001) Rational homotopy theory. EN: Graduate Texts in Mathematics, 205. New York: Springer-Verlag.
[8] FÉLIX, Y. (2008) Algebraic models in geometry. EN: Oxford Graduate Texts in Mathematics, 17. Oxford: Oxford University Press.
[9] HALPERIN, S. (1977) Finiteness in the minimal models of Sullivan. EN: Trans. A. M. S. 230. [s.l.: s.n.], 173-199.
[10] HALPERIN, S. (1985) Rational homotopy and torus actions. EN: London Math. Soc. Lecture Note Series 93. [s.l.]: Cambridge Univ. Press, 293-306.
[11] HILALI, M. R. (2000) Sur la conjecture de Halperin relative au rang torique. EN: Bull. Belg. Math. Soc. Simon Stevin 7(2). [s.l.: s.n.], 221-227.
[12] HILALI, M. R. (1990) Actions du tore T n sur les espaces simplement connexes. Thèse à l’Université catholique de Louvain.
[13] HSIANG, W. Y. (1975) Cohomology theory of topological transformation groups, Berlin: Springer.
[14] JAMES, I. M. (1995) Reduced product spaces. EN: Ann. of math 82. [s.l.: s.n.], 170-197.
[15] PUPPE, V. (2009) Multiplicative aspects of the Halperin-Carlsson conjecture. EN: Georgian Mathematical Journal, 16:2. [s.l.: s.n.], 369379. arXiv 0811.3517.
[16] PUPPE, V. (1987) On the torus rank of topological spaces, Proceding Baker. [s.l.: s.n.].
[17] SHAFAREVICH, I. R. (1994) Basic Algebraic Geometry, 2 Vols.. [s.l.]: Springer.
[18] USTINOVSKII, YU. (2012) On almost free torus actions and Horroks conjecture. [s.l.: s.n.]. arXiv 1203.3685v2.
Downloads
Published
2017-06-02
Issue
Section
Artículos
License
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
[1]
“On the toral rank conjecture and some consequences”, Proyecciones (Antofagasta, On line), vol. 36, no. 2, pp. 299–306, Jun. 2017, doi: 10.4067/10.4067/S0716-09172017000200299.