An Algorithmic Approach to Equitable Total Chromatic Number of Graphs

  • Veninstine Vivik J. Karunya University.
  • Girija G. Government Arts College.
Palabras clave: Equitable total coloring, Wheel, Helm, Gear, Sunlet

Resumen

Biografía del autor

Veninstine Vivik J., Karunya University.
Department of Mathematics.
Girija G., Government Arts College.
Department of Mathematics.

Citas

[1] BONDY, J. A. (1976) Graph Theory with Applications. New York: The Macmillan Press Ltd.

[2] HARARY, FRANK. (1969) Graph Theory. [s.l.]: Narosa Publishing home.

[3] KUN, GONG. (2008) Equitable Total Coloring of Some Join Graphs. EN: Journal of Mathematical Research Exposition, 28(4). [s.l.: s.n.], 823-828.

[4] HUNG-LIN FU. (1994) Some results on equalized total coloring. EN: Congr. Numer. 102. [s.l.: s.n.], 111-119.

[5] GANG, M. A. (2012) The equitable total chromatic number of some join graphs. EN: Open Journal of Applied Sciences. World Congress of Engineering and Technology. [s.l.: s.n.], 96-99.

[6] GANG, M. A. (2012) On the Equitable Total Coloring of Multiple Join-graph. EN: Journal of Mathematical Research and Exposition, 27(2). [s.l.: s.n.], 351-354.

[7] MEYER, W. (1973) Equitable Coloring. EN: Amer. Math. Monthly, 80. [s.l.: s.n.], 920-922.

[8] SANCHEZ - ARROYO, A. (1989) Determining the total coloring number is NPHard. EN: Discrete Math, 78. [s.l.: s.n.], 315-319.

[9] VIZING, V. G. (1964) On an estimate of the chromatic class of a p-graph. EN: Metody Diskret. Analiz., 5. [s.l.: s.n.], 25-30.

[10] WEI-FAN WANG. (2002) Equitable total coloring of graphs with maximum degree 3. EN: Graphs Combin, 18. [s.l.: s.n.], 677-685.

[11] TONG CHUNLING. (2009) Equitable total coloring of Cm2Cn. EN: Discrete Applied Mathematics, 157. [s.l.: s.n.], 596-601.
Publicado
2017-06-02
Cómo citar
Vivik J., V., & G., G. (2017). An Algorithmic Approach to Equitable Total Chromatic Number of Graphs. Proyecciones. Journal of Mathematics, 36(2), 307-324. https://doi.org/10.4067/S0716-09172017000200307
Sección
Artículos