Error analysis of a least squares pseudo-derivative moving least squares method

Jhules Clack, Donald A. French, Mauricio Osorio

Resumen


Meshfree methods offer the potential to relieve the scientist from the time consuming grid generation process especially in cases where localized mesh refinement is desired. Moving least squares (MLS) methods are considered such a meshfree technique. The pseudo-derivative (PD) approach has been used in many papers to simplify the manipu- lations involved in MLS schemes. In this paper, we provide theoretical error estimates for a least squares implementation of an MLS/PD method with a stabilization mechanism. Some beginning computations suggest this stabilization leads to good matrix conditioning.

Palabras clave


Stability and convergence of numerical methods; Second-order elliptic equations.

Texto completo:

PDF

Referencias


[AD] M.G. Armentano and R.G. Duran, Error estimates for moving least square approximations, Appl. Num. Math., 37, pp. 297-416, (2001).

[BKOFK] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: An overview and recent developments, Com- put. Methods Appl. Mech. Engrg., 139, pp. 3-47, (1996).

[BRTV] P. Breitkopf, A. Rassineux, G. Touzot and R. Villon, Explicit form and efficient computation of MLS shape functions and their deriva- tives, Int. J. Num. Meth. Eng., 48, pp. 451-466, (2000).

[BS] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite El- ement Methods, Springer-Verlag, (1994).

[Cl] Jhules Clack, Error Estimates for MLS/PD Least Squares Methods, PhD Thesis, University of Cincinnati, (2014).

[FO] D. French and M. Osorio, Error estimates for a meshfree method with diffuse dervatives and penalty stabilization, Computational Mechanics, 50, pp. 657-664, (2012).

[HM] W. Han and X. Meng, Error analysis of the reproducing kernel par- ticle method, Comput. Methods Appl. Math., 190, pp. 6157-6181, (2001).

[HBFR] A. Huerta, T. Belytschko, S. Fernandez-Mendez and T. Rabczuk, Meshfree Methods (Chapter 10), Encyclopedia of Computational Me- chanics (Ed. E. Stein), J. Wiley & Sons., (2004).

[HVV1] A. Huerta, Y. Vidal and P. Villon, Pseudo-divergence-free ele- ment free Galerkin method for incompressible flow, Comp. Meth. Appl. Math. Engrg., 193, pp. 1119-1136, (2004).

[KL] D. W. Kim and W.K. Liu, SIAM J. Num. Anal., 44, pp. 515-539, (2006).

[KLYBL] D. W. Kim, W.K. Liu, Y.-C. Yoon, T. Belytschko and S.-H. Lee, Meshfree point collocation method with intrinsic enrichment for interface problems, Comput. Mech., 40, pp. 1037-1052, (2007).

[LY] S.-H. Lee and Y.-C. Yoon, Int. J. Num. Meth. Engrg., 61, pp. 22-48, (2004).

[NTV] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite ele- ment method: Diffuse approximation and diffuse elements, Comput. Mech., 10, pp. 307-318, (1992).

[OF] M. Osorio and D.A. French, A Galerkin meshfree method with dif- fuse derivatives and stabilization: Two-dimensional case, Revista In- genieria Y Ciencia (J. Engr. Sci.), 9, pp. 53-76, (2013).

[O] M. Osorio, ErrorEstimatesforaMeshfreeMethodwithDiffuse Deriva- tives and Penalty Stabilization, PhD Thesis, University of Cincinnati, (2010).

[VVH2] Y. Vidal, P. Villon and A. Huerta, Locking in the incompress- ible limit: pseudo-divergence-free element free Galerkin, Comm. Num. Meth. Eng., 19, pp. 725-735, (2003).

[YLB] Y.-C. Yoon, S.-H. Lee, and T. Belytschko, Enriched meshfree col- location method with diffuse derivatives for elastic fracture, Comp. Math. Appl., 51, pp. 1349-1366, (2006).


Enlaces refback

  • No hay ningún enlace refback.