The generalized Van Vleck's equation on locally compact groups

B. Fadli, D. Zeglami, S. Kabbaj

Resumen


We determine the continuous solutions ʄ, g :GC of each of the two functional equations

 

 

where G is a locally compact group, σ is a continuous involutive automorphism on G, and μ is a compactly supported, complex-valued Borel measure on G.


Palabras clave


Functional equation; Van Vleck; involutive automorphism; character; additive map.

Texto completo:

PDF

Referencias


Ebanks, B. R., Stetkær, H.: d'Alembert's other functional equation on monoids with an involution. Aequationes Math. 89(1), pp. 187-206, (2015).

Fadli, B., Zeglami, D., Kabbaj, S.: A variant of Wilson's functional equation. Publ. Math. Debrecen 87(3-4), pp. 415-427, (2015).

Fadli, B., Zeglami, D., Kabbaj, S.: A joint generalization of Van Vleck's and Kannappan's equations on groups. Adv. Pure Appl. Math. 6(3), pp. 179-188, (2015).

Perkins, A.M., Sahoo, P.K.: On two functional equations with involution on groups related to sine and cosine functions. Aequationes Math. 89(5), pp. 1251-1263, (2015).

Stetkær, H.: Functional equations on abelian groups with involution. Aequationes Math. 54(1-2), pp. 144-172, (1997).

Stetkær, H.: Functional equations on groups. World Scientific Publishing Co, Singapore, (2013).

Stetkær, H.: Van Vleck's functional equation for the sine. Aequationes Math. 90(1), pp. 25-34, (2016).

Van Vleck, E.B.: A functional equation for the sine. Ann. Math. Second Ser. 11(4), pp. 161-165, (1910).

Van Vleck, E.B.: A functional equation for the sine. Additional note. Ann. Math. 13(1/4) (1911-1912), 154, (...).

Zeglami, D., Fadli, B., Kabbaj, S.: On a variant of μ-Wilson's functional equation on a locally compact group. Aequationes Math. 89(5), pp. 1265-1280, (2015).


Enlaces refback

  • No hay ningún enlace refback.