On the solution of functional equations of Wilson's type on monoids

Iz-iddine El-Fassi, Abdellatif Chahbi, Samir Kabbaj


Let S be a monoid, C be the set of complex numbers, and let σ,τAntihom(S,S) satisfy τ ○ τ =σ ○ σ= id. The aim of this paper is to describe the solution ⨍,g: S C of the functional equation




in terms of multiplicative and additive functions.

Palabras clave

Wilson's functional equation; monoids; multiplicative function

Texto completo:



J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, New York, (1989).

A. Chahbi, B. Fadli and S. Kabbaj, A generalization of the symmetrized multiplicative Cauchy equation, ActaMath. Hungar., 149, pp. 1--7, (2016).

B. R. Ebanks and H. Stetkær, On Wilson's functional equations, Aequat. Math., 89, pp. 339--354, (2015).

B. R. Ebanks and H. Stetkær, d'Alembert's other functional equation on monoids with an involution, Aequationes Math. 89, pp. 187--206, (2015).

Iz. EL-Fassi, A. Chahbi and S. Kabbaj, The Solution of a class functional equations on semi-groups, Filomat, to appear.

PL. Kannappan, Functional equations and inequalities with applications, Springer, New York, (2009).

H. Stetkær, On multiplicative maps, semi-group Forum, 63 (3), pp. 466-468, (2001).

H. Stetkær, On a variant of Wilson's functional equation on groups, Aequat. Math., 68, pp. 160--176, (2004).

H. Stetkær, Functional equations on groups, World Scientific Publishing Co, Singapore, (2013).

H. Stetkær, A variant of d'Alembert's functional equation, Aequationes Math. 89, pp. 657-662, (2015).

H. Stetkær, A link between Wilson's and d’Alembert's functional equations, Aequat. Math. 90, pp. 407--409, (2015).

Enlaces refback

  • No hay ningún enlace refback.