On fractional powers of double band matrices

P. Baliarsingh, L. Nayak, P. Beuria

Resumen


In the present article, we determine the explicit formula for finding the fractional powers of a double band matrix and in particular, we establish the formula for finding the

Palabras clave


Forward difference operator; Backward difference operator; Double band matrix.

Texto completo:

PDF

Referencias


Z. U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their martix maps, Publ. Inst. Math. (Beograd), 42 (56), pp. 57-61, (1987).

B. Altay, F. Başar, On the fine spectrum of the difference operator ∆ on c0 and c, Inform. Sci., 168, pp. 217-224, (2004).

B. Altay, F. Başar, On the fine spectrum of the generalized difference operator B (r, s)over the sequence spaces c0 and c, Int. J. Math. Math. Sci. 18, pp. 3005-3013, (2005).

P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219 (18), pp. 9737-9742, (2013).

P. Baliarsingh, S. Dutta, On the classes of fractional order difference sequence spaces and their matrix transformations, Appl. Math. Comput. 250, pp. 665--674, (2015).

P. Baliarsingh, S. Dutta, A unifying approach to the difference operators and their applications, Bol. Soc. Paran. Mat., 33 (1), pp. 49–-57, (2015).

M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 (4), pp. 377-386, (1995).

H. Furkan, H. Bilgiç, H. Furkan, On the fine spectrum of the generalized difference operator B (r, s) over the sequence spaces ℓp and bvp, (1 < p < ∞), Nonlinear Anal., 68(3) pp. 499--506, (2008).

H. Kizmaz, On Certain Sequence spaces, Canad. Math. Bull., 24(2), pp. 169-176, (1981).


Enlaces refback

  • No hay ningún enlace refback.