Hermite-Hadamard type fractional integral inequalities for generalized beta (r, g)-preinvex functions

  • Artion Kashuri University Ismail Qemali.
  • Rozana Liko University Ismail Qemali.

Resumen

In the present paper, a new class of generalized beta (r, g)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized beta (r, g)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized beta (r, g)-preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see [1]), [2]), but also provide new estimates on these types.

Biografía del autor

Artion Kashuri, University Ismail Qemali.
Faculty of Technical Science, Department of Mathematic.
Rozana Liko, University Ismail Qemali.
Faculty of Technical Science, Department of Mathematic.

Citas

[1] A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, ϕ)-preinvex functions, Aust. J. Math. Anal. Appl., 13 (1), Article 16, 1-11, (2016).

[2] A. Akkurt and H. Yildirim, On some fractional integral inequalities of Hermite-Hadamard type for r-preinvex functions, Khayyam J. Math., 2, (2), pp. 119-126, (2016).

[3] T. S. Du, J. G. Liao and Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9, pp. 3112-3126, (2016).

[4] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21, pp. 335-341, (1995).

[5] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, pp. 100-111, (1994).

[6] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, pp. 1473-1484, (2005).

[7] X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, pp. 607-625, (2003).

[8] R. Pini, Invexity and generalized convexity, Optimization., 22, pp. 513-525, (1991).

[9] H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, arXiv:1006.1593v1 [math. CA], pp. 1-10, (2010).

[10] Y. M. Chu, G. D. Wang and X. H. Zhang, Schur convexity and Hadamard’s inequality, Math. Inequal. Appl., 13, (4), pp. 725-731,(2010).

[11] X. M. Zhang, Y. M. Chu and X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl., (2010), Article ID 507560, 11 pages.

[12] Y. M. Chu, M. A. Khan, T. U. Khan and T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9, (5), pp. 4305-4316, (2016).

[13] M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman, Inequalities for three times differentiable functions, J. Math., Punjab Univ., 48, (2), pp. 35-48, (2016).

[14] M. Adil Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via α-convex functions, Acta Math. Univ. Comenianae, 79, (1), pp. 153-164, (2017).

[15] H. N. Shi, Two Schur-convex functions related to Hadamard-type integral inequalities, Publ. Math. Debrecen, 78, (2), pp. 393-403, (2011).

[16] F. X. Chen and S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9, (2), pp. 705-716, (2016).

[17] D. D. Stancu, G. Coman and P. Blaga, Analiză numeric㸠si teoría aproximării, Cluj-Napoca: Presa Universitară Clujeană., 2, (2002).

[18] W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc Math Notes., 15, (2), pp. 585-591, (2014).

[19] M. E. Özdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20, (1), pp. 62-73, (2011).

[20] W. Dong Jiang, D. Wei Niu and F. Qi, Some Fractional Inequalties of Hermite-Hadamard type for r-ϕ-Preinvex Functions, Tamkang J.Math., 45, (1), pp. 31-38, (2014).

[21] F. Qi and B. Y. Xi, Some integral inequalities of Simpson type for GA− ϵ-convex functions, Georgian Math. J., 20, (5), pp. 775-788, (2013).

[22] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9, pp. 766-777, (2016).
Cómo citar
Kashuri, A., & Liko, R. (1). Hermite-Hadamard type fractional integral inequalities for generalized beta (r, g)-preinvex functions. Proyecciones. Journal of Mathematics, 36(4), 711-726. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2544
Sección
Artículos