Existence of solutions for a nonlinear fractional system with nonlocal boundary conditions

  • A. Guezane-Lakoud University of Badji Mokhtar Annaba.
  • G. Rebiai University of Guelma.
  • R. Khaldi University of Badji Mokhtar Annaba.

Resumen

In this paper, we use fixed point theorems to prove the existence and uniqueness of solution for a nonlinear fractional system with boundary conditions. At the end we present two examples illustrating the obtained results.

Biografía del autor

A. Guezane-Lakoud, University of Badji Mokhtar Annaba.
Laboratory of Advanced Materials.
G. Rebiai, University of Guelma.
Department of Mathematics.
R. Khaldi, University of Badji Mokhtar Annaba.
Laboratory of Advanced Materials.

Citas

[1] R. P. Agarwal, D. O'Regan, S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal.Appl., 371, pp. 57--68, (2010).

[2] B. Ahmad, A. Alsaedi, Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations, Fixed Point Theory Appl., Article ID 364560 (2010).

[3] B. Ahmad, J. J. Nieto, Riemann--Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 36, pp. 1--9, (2011).

[4] B. Ahmad, Nonlinear fractional differential equations with anti-periodic type fractional boundary conditions, Differ. Equ. Dyn. Syst., 21(4), pp. 387--401, (2013)

[5] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011, Art ID 720-702, (2011).

[6] A. Guezane-Lakoud, R. Khaldi and A. Kiliçman, Solvability of a boundary value problem at resonance, SpringerPlus, (2016)5:1504.

[7] A. Guezane-Lakoud, A. Ashyralyev, Positive Solutions for a System of Fractional Differential Equations with Nonlocal Integral Boundary Conditions, Differ Equ Dyn Syst, DOI 10.1007/s12591-015-0255-9.

[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam, (2006).

[9] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations.Nonlinear Anal., 69, pp. 2677--2682, (2008).

[10] K.Q. Lan, Positive solutions of semi-positone Hammerstein integral equations and applications, Commun. Pure Appl. Anal., 6 (2), pp. 441--451, (2007).

[11] K.Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71, (2009)

[12] S. K. Ntouyas, M. Obaid, A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ., Article ID 130, (2012).

[13] I. Podlubny,Fractional Differential Equations Mathematics in Sciences and Engineering, Academic Press, New York, (1999).

[14] M. Rehman, R. A. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl., 61, pp. 2630--2637, (2011).

[15] H. Salem, On the existence of continuous solutions for a singular system of nonlinear fractional differential equations, Appl. Math.Comput., 198, pp. 445--452, (2008).

[16] X. Su, Existence of solution of boundary value problem for coupled system of fractional differential equations, Eng. Math., 26, pp. 134--137, (2009).

[17] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett., 22, pp. 64--69, (2009).
Cómo citar
Guezane-Lakoud, A., Rebiai, G., & Khaldi, R. (1). Existence of solutions for a nonlinear fractional system with nonlocal boundary conditions. Proyecciones. Journal of Mathematics, 36(4), 727-737. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2546
Sección
Artículos